In recent years, the study of the plant cell cycle has become of major interest, not only to scientists working on cell division sensu strictu , but also to scientists dealing with plant hormones, development and environmental effects on growth. The book The Plant Cell Cycle is a very timely contribution to this exploding field. Outstanding contributors reviewed, not only knowledge on the most important classes of cell cycle regulators, but also summarized the various processes in which cell cycle control plays a pivotal role. The central role of the cell cycle makes this book an absolute must for plant molecular biologists.
This volume aims to present a large panel of techniques for the study of Plant Cell Division. Plant Cell Division: Methods and Protocols captures basic experimental protocols that are commonly used to study plant cell division processes, as well as more innovative procedures. Chapters are split into five parts covering several different aspect of plant cell division such as, cell cultures for cell division studies, cell cycle progression and mitosis, imaging plant cell division, cell division and morphogenesis, and cytokinesis. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Cell Division: Methods and Protocols is a valuable tool for the study of plant cell division at both the cellular and molecular levels, and in the context of plant development.
This monograph on plant cell division provides a detailed overview of the molecular events which commit cells to mitosis or which affect, or effect mitosis.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
The first compilation of a wealth of knowledge on tobacco BY-2 cells, often cited as the HeLa cell line of higher plants. Basic issues of cell cycle progression, cytokinesis, cell organization and factors that are involved in these processes are covered in detail. Since the tobacco cell line is used as a tool for research in molecular and cellular biology, several chapters on such studies are also included. Further, changes of primary and secondary metabolites during culture and factors that affect these processes are treated. Last but not least, the so far unpublished historical background of the BY-2 cell line is described. This volume is a must for any scientist working in the field of plant biology.
Targeted at beginners as well as experienced users, this handy reference explains the benefits and uses of flow cytometery in the study of plants and their genomes. Following a brief introduction that highlights general considerations when analyzing plant cells by flow cytometric methods, the book goes on to discuss examples of application in plant genetics, genomic analysis, cell cycle analysis, marine organism analysis and breeding studies. With its list of general reading and a glossary of terms, this first reference on FCM in plants fills a real gap by providing first-hand practical hints for the growing community of plant geneticists.
Intended as a text for upper-division undergraduates, graduate students and as a potential reference, this broad-scoped resource is extensive in its educational appeal by providing a new concept-based organization with end-of-chapter literature references, self-quizzes, and illustration interpretation. The concept-based, pedagogical approach, in contrast to the classic discipline-based approach, was specifically chosen to make the teaching and learning of plant anatomy more accessible for students. In addition, for instructors whose backgrounds may not primarily be plant anatomy, the features noted above are designed to provide sufficient reference material for organization and class presentation. This text is unique in the extensive use of over 1150 high-resolution color micrographs, color diagrams and scanning electron micrographs. Another feature is frequent side-boxes that highlight the relationship of plant anatomy to specialized investigations in plant molecular biology, classical investigations, functional activities, and research in forestry, environmental studies and genetics, as well as other fields. Each of the 19 richly-illustrated chapters has an abstract, a list of keywords, an introduction, a text body consisting of 10 to 20 concept-based sections, and a list of references and additional readings. At the end of each chapter, the instructor and student will find a section-by-section concept review, concept connections, concept assessment (10 multiple-choice questions), and concept applications. Answers to the assessment material are found in an appendix. An index and a glossary with over 700 defined terms complete the volume.
Written by respected researchers, this is an excellent account of the eukaryotic cell cycle that is suitable for graduate and postdoctoral researchers. It discusses important experiments, organisms of interest and research findings connected to the different stages of the cycle and the components involved.