The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.
"This is the third edition of the Activity Guide developed as part of the Workshop Physics Project. Although this Guide contains text material and experiments, it is neither a textbook nor a laboratory manual. It is a student workbook designed to serve as the foundation for a two-semester, calculus-based introductory physics course sequence that is student-centered and focuses on hands-on learning. The activities have been designed using the outcomes of physics education research and honed through years of classroom testing at Dickinson College. The Guide consists of 28 units that interweave written descriptions with activities that involve predictions, qualitative observations, explanations, equation derivations, mathematical modeling, quantitative experimentation, and problem solving. Throughout these units, students make use of a flexible set of computer-based data-acquisition tools to record, display, and analyze data, as well as to develop mathematical models of various physical phenomena"--
Workshop Physics Activity Guide is a student workbook designed to serve as the foundation for a two-semester calculus-based introductory physics course sequence that is activity-centered. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical model building, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display and analyze data as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. Workshop Physics Activity Guide is available in a format designed to give instructors flexibility in integrating all or some of the Workshop Physics units into their curriculum. The Core Volume (ISBN 0-471-15593-4) includes the introductory chapters and appendices that provide the foundation for all the other activity-based units. It includes the first seven activity units (Module1) comprising the first half of mechanics which covers experimental uncertainty, kinematics, and Newton' s Laws. The remaining activity units are available in three independent Modules. Each module is a collection of loose-leaf, three-hole punched sheets. Module 2 (ISBN 0-471-15594-2) covers additional topics in mechanics including momentum, energy, rotation, oscillations, and chaos. Module 3 (ISBN 0-471-15595-0) covers thermodynamics and nuclear radiation. Module 4 (ISBN 0-471-15596-9) covers electricity and magnetism. The Workshop Physics Activity Guide approach is supported by an Instructor' s Manual that (1) describes theunderlying history and philosophy of the Workshop Physics Project; (2) provides advice and suggestions on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) as well as apparatus; and (4) includes suggested homework assignments for each unit. The Guide includes activities especially designed to be used with digital video capture tools and analysis software such as VideoPoint. Developed by the authors and available from PASCO Scientific, VideoPoint enhances the students' ability to observe and understand two-dimensional motion and other phenomena. For more information on the Workshop Physics Activity Guide and VideoPoint, please log on to the Workshop Physics Project Home page at " http: //physics. dickinson.edu/" or the John Wiley & Sons home page at " http: //www.wiley.com"
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor’s Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at https://www.dickinson.edu/homepage/ Workshop Physics is a component of the Physics Suite––a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including: Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor’s Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at https://www.dickinson.edu/homepage/ Workshop Physics is a component of the Physics Suite––a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including: Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)
Interactive Lecture Demonstrations (ILDs) are designed to enhance conceptual learning in physics lectures through active engagement of students in the learning process. Students observe real physics demonstrations, make predictions about the outcomes on a prediction sheet, and collaborate with fellow students by discussing their predictions in small groups. Students then examine the results of the live demonstration (often displayed as real-time graphs using computer data acquisition tools), compare these results with their predictions, and attempt to explain the observed phenomena. ILDs are available for all of the major topics in the introductory physics course and can be used within the traditional structure of an introductory physics course. All of the printed materials needed to implement them are included in this book.
Strengthen programs of family and community engagement to promote equity and increase student success! When schools, families, and communities collaborate and share responsibility for students′ education, more students succeed in school. Based on 30 years of research and fieldwork, the fourth edition of the bestseller School, Family, and Community Partnerships: Your Handbook for Action, presents tools and guidelines to help develop more effective and more equitable programs of family and community engagement. Written by a team of well-known experts, it provides a theory and framework of six types of involvement for action; up-to-date research on school, family, and community collaboration; and new materials for professional development and on-going technical assistance. Readers also will find: Examples of best practices on the six types of involvement from preschools, and elementary, middle, and high schools Checklists, templates, and evaluations to plan goal-linked partnership programs and assess progress CD-ROM with slides and notes for two presentations: A new awareness session to orient colleagues on the major components of a research-based partnership program, and a full One-Day Team Training Workshop to prepare school teams to develop their partnership programs. As a foundational text, this handbook demonstrates a proven approach to implement and sustain inclusive, goal-linked programs of partnership. It shows how a good partnership program is an essential component of good school organization and school improvement for student success. This book will help every district and all schools strengthen and continually improve their programs of family and community engagement.
This computer-based lab manual contains experiments in mechanics, thermodynamics, E&M, and optics using hardware and software designed to enhance readers' understanding of calculus-based physics concepts. It uses an active learning cycle, including concept overviews, hypothesis-testing, prediction-making, and investigations.
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.