The name of Bernard Riemann is well known to mathematicians and physicists around the world. His name is indelibly stamped on the literature of mathematics and physics. This remarkable work, rich in insight and scholarship, is addressed to mathematicians, physicists, and philosophers interested in mathematics. It seeks to draw those readers closer to the underlying ideas of Riemann’s work and to the development of them in their historical context. This illuminating English-language version of the original German edition will be an important contribution to the literature of the history of mathematics.
In this book, the author pays tribute to Bernhard Riemann (1826–1866), mathematician with revolutionary ideas, whose work on the theory of integration, the Fourier transform, the hypergeometric differential equation, etc. contributed immensely to mathematical physics. This book concentrates in particular on Riemann’s only work on prime numbers, including such then new ideas as analytical continuation in the complex plane and the product formula for entire functions. A detailed analysis of the zeros of the Riemann zeta function is presented. The impact of Riemann’s ideas on regularizing infinite values in field theory is also emphasized.
Each chapter of this portrait of the evolution of mathematics examines the work of an individual — Archimedes, Descartes, Fermat, Pascal, Newton, Einstein, and others — to explore the mathematics of his era. Rather than a series of biographical profiles, readers encounter an accessible chronology of pioneering developments in mathematics. 1989 edition.
The writings of Newton, Leibniz, Pascal, Riemann, Bernoulli, and others in a comprehensive selection of 125 treatises dating from the Renaissance to the late 19th century — most unavailable elsewhere.
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.
Intended for juniors and seniors majoring in mathematics, as well as anyone pursuing independent study, this book traces the historical development of four different mathematical concepts by presenting readers with the original sources. Each chapter showcases a masterpiece of mathematical achievement, anchored to a sequence of selected primary sources. The authors examine the interplay between the discrete and continuous, with a focus on sums of powers. They then delineate the development of algorithms by Newton, Simpson and Smale. Next they explore our modern understanding of curvature, and finally they look at the properties of prime numbers. The book includes exercises, numerous photographs, and an annotated bibliography.
This two-volume work brings together a comprehensive selection of mathematical works from the period 1707-1930. During this time the foundations of modern mathematics were laid, and From Kant to Hilbert provides an overview of the foundational work in each of the main branches of mathmeatics with narratives showing how they were linked. Now available as a separate volume.
Taking readers from elementary number theory, via algorithmic, to applied number theory in computer science, this text introduces basic concepts, results, and methods, before going on to discuss their applications in the design of hardware and software, cryptography, and security. Aimed at undergraduates in computing and information technology, and presupposing only high-school math, this book will also interest mathematics students concerned with applications. XXXXXXX Neuer Text This is an essential introduction to number theory for computer scientists. It treats three areas, elementary-, algorithmic-, and applied number theory in a unified and accessible manner. It introduces basic concepts and methods, and discusses their applications to the design of hardware, software, cryptography, and information security. Aimed at computer scientists, electrical engineers and students the presentation presupposes only an understanding of high-school math.