The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

Author: A. K. Aziz

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 814

ISBN-13: 1483267989

DOWNLOAD EBOOK

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.


The Finite Element Method for Elliptic Problems

The Finite Element Method for Elliptic Problems

Author: P.G. Ciarlet

Publisher: Elsevier

Published: 1978-01-01

Total Pages: 551

ISBN-13: 0080875254

DOWNLOAD EBOOK

The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.


The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods

Author: Susanne Brenner

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 369

ISBN-13: 1475736584

DOWNLOAD EBOOK

A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide


Partial Differential Equations and the Finite Element Method

Partial Differential Equations and the Finite Element Method

Author: Pavel Ŝolín

Publisher: John Wiley & Sons

Published: 2005-12-16

Total Pages: 505

ISBN-13: 0471764094

DOWNLOAD EBOOK

A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.


Theory and Practice of Finite Elements

Theory and Practice of Finite Elements

Author: Alexandre Ern

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 531

ISBN-13: 1475743556

DOWNLOAD EBOOK

This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.