Waves in Oceanic and Coastal Waters

Waves in Oceanic and Coastal Waters

Author: Leo H. Holthuijsen

Publisher: Cambridge University Press

Published: 2010-02-04

Total Pages: 9

ISBN-13: 1139462520

DOWNLOAD EBOOK

Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions with islands, channels, tidal flats and inlets, estuaries, fjords and lagoons. Most of this richly illustrated book is devoted to the physical aspects of waves. After introducing observation techniques for waves, both at sea and from space, the book defines the parameters that characterise waves. Using basic statistical and physical concepts, the author discusses the prediction of waves in oceanic and coastal waters, first in terms of generalised observations, and then in terms of the more theoretical framework of the spectral energy balance. He gives the results of established theories and also the direction in which research is developing. The book ends with a description of SWAN (Simulating Waves Nearshore), the preferred computer model of the engineering community for predicting waves in coastal waters.


Synthetic Aperture Radar

Synthetic Aperture Radar

Author: Christopher R. Jackson

Publisher: National Environmental Satellite, Data, & Information Service

Published: 2004

Total Pages: 464

ISBN-13: 9780160732140

DOWNLOAD EBOOK

Describes the types of information available from spaceborne images of the ocean.


The Atmospheric Boundary Layer

The Atmospheric Boundary Layer

Author: J. R. Garratt

Publisher: Cambridge University Press

Published: 1994-04-21

Total Pages: 340

ISBN-13: 9780521467452

DOWNLOAD EBOOK

The book gives a comprehensive and lucid account of the science of the atmospheric boundary layer (ABL). There is an emphasis on the application of the ABL to numerical modelling of the climate. The book comprises nine chapters, several appendices (data tables, information sources, physical constants) and an extensive reference list. Chapter 1 serves as an introduction, with chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and sea. The structure of the clear-sky, thermally stratified ABL is treated in chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant, since the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate simulation.


Waves in the Ocean

Waves in the Ocean

Author: P.H. LeBlond

Publisher: Elsevier

Published: 1981-01-01

Total Pages: 617

ISBN-13: 0080879772

DOWNLOAD EBOOK

This is a book which will be welcomed not only by researchers and engineers, but also by teachers and students, as it contains the only comprehensive review of the dynamics of ocean waves. Existing books are now either out of date or restricted to specialized aspects of the subject, whereas this book covers all types of ocean waves, ranging from capillary to planetary waves. Because of its completeness of coverage, its use of elementary mathematics and the provision of numerous problems and exercises, the book will be an indispensable text for everyone. It is completed by a very lengthy bibliography which includes many references to the Russian literature.


Air-Sea Exchange: Physics, Chemistry and Dynamics

Air-Sea Exchange: Physics, Chemistry and Dynamics

Author: G.L. Geernaert

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 573

ISBN-13: 9401592918

DOWNLOAD EBOOK

During the 1980's a wealth of information was reported from field and laboratory experiments in order to validate andlor modify various aspects of the surface layer Monin-Obukhov (M-O) similarity theory for use over the sea, and to introduce and test new concepts related to high resolution flux magnitudes and variabilities. For example, data from various field experiments conducted on the North Sea, Lake Ontario, and the Atlantic experiments, among others, yielded information on the dependence of the flux coefficients on wave state. In all field projects, the usual criteria for satisfying M-O similarity were applied. The assumptions of stationarity and homogeneity was assumed to be relevant over both small and large scales. In addition, the properties of the outer layer were assumed to be "correlated" with properties of the surface layer. These assumptions generally required that data were averaged for spatial footprints representing scales greater than 25 km (or typically 30 minutes or longer for typical windspeeds). While more and more data became available over the years, and the technology applied was more reliable, robust, and durable, the flux coefficients and other turbulent parameters still exhibited significant unexplained scatter. Since the scatter did not show sufficient reduction over the years to meet customer needs, in spite of improved technology and heavy financial investments, one could only conclude that perhaps the use of similarity theory contained too many simplifications when applied to environments which were more complicated than previously thought.


Atmosphere-Ocean Interaction

Atmosphere-Ocean Interaction

Author: Eric B. Kraus

Publisher: Oxford University Press

Published: 1994-11-10

Total Pages: 385

ISBN-13: 019536208X

DOWNLOAD EBOOK

With both the growing importance of integrating studies of air-sea interaction and the interest in the general problem of global warming, the appearance of the second edition of this popular text is especially welcome. Thoroughly updated and revised, the authors have retained the accessible, comprehensive expository style that distinguished the earlier edition. Topics include the state of matter near the interface, radiation, surface wind waves, turbulent transfer near the interface, the planetary boundary layer, atmospherically-forced perturbations in the oceans, and large-scale forcing by sea surface buoyancy fluxes. This book will be welcomed by students and professionals in meteorology, physical oceanography, physics and ocean engineering.