The Limits of Inference without Theory

The Limits of Inference without Theory

Author: Kenneth I. Wolpin

Publisher: MIT Press

Published: 2013-04-26

Total Pages: 197

ISBN-13: 0262019086

DOWNLOAD EBOOK

The role of theory in ex ante policy evaluations and the limits that eschewing theory places on inference In this rigorous and well-crafted work, Kenneth Wolpin examines the role of theory in inferential empirical work in economics and the social sciences in general—that is, any research that uses raw data to go beyond the mere statement of fact or the tabulation of statistics. He considers in particular the limits that eschewing the use of theory places on inference. Wolpin finds that the absence of theory in inferential work that addresses microeconomic issues is pervasive. That theory is unnecessary for inference is exemplified by the expression “let the data speak for themselves.” This approach is often called “reduced form.” A more nuanced view is based on the use of experiments or quasi-experiments to draw inferences. Atheoretical approaches stand in contrast to what is known as the structuralist approach, which requires that a researcher specify an explicit model of economic behavior—that is, a theory. Wolpin offers a rigorous examination of both structuralist and nonstructuralist approaches. He first considers ex ante policy evaluation, highlighting the role of theory in the implementation of parametric and nonparametric estimation strategies. He illustrates these strategies with two examples, a wage tax and a school attendance subsidy, and summarizes the results from applications. He then presents a number of examples that illustrate the limits of inference without theory: the effect of unemployment benefits on unemployment duration; the effect of public welfare on women's labor market and demographic outcomes; the effect of school attainment on earnings; and a famous field experiment in education dealing with class size. Placing each example within the context of the broader literature, he contrasts them to recent work that relies on theory for inference.


The Limits of Inference without Theory

The Limits of Inference without Theory

Author: Kenneth I. Wolpin

Publisher: MIT Press

Published: 2013-04-26

Total Pages: 197

ISBN-13: 0262313685

DOWNLOAD EBOOK

The role of theory in ex ante policy evaluations and the limits that eschewing theory places on inference In this rigorous and well-crafted work, Kenneth Wolpin examines the role of theory in inferential empirical work in economics and the social sciences in general—that is, any research that uses raw data to go beyond the mere statement of fact or the tabulation of statistics. He considers in particular the limits that eschewing the use of theory places on inference. Wolpin finds that the absence of theory in inferential work that addresses microeconomic issues is pervasive. That theory is unnecessary for inference is exemplified by the expression “let the data speak for themselves.” This approach is often called “reduced form.” A more nuanced view is based on the use of experiments or quasi-experiments to draw inferences. Atheoretical approaches stand in contrast to what is known as the structuralist approach, which requires that a researcher specify an explicit model of economic behavior—that is, a theory. Wolpin offers a rigorous examination of both structuralist and nonstructuralist approaches. He first considers ex ante policy evaluation, highlighting the role of theory in the implementation of parametric and nonparametric estimation strategies. He illustrates these strategies with two examples, a wage tax and a school attendance subsidy, and summarizes the results from applications. He then presents a number of examples that illustrate the limits of inference without theory: the effect of unemployment benefits on unemployment duration; the effect of public welfare on women's labor market and demographic outcomes; the effect of school attainment on earnings; and a famous field experiment in education dealing with class size. Placing each example within the context of the broader literature, he contrasts them to recent work that relies on theory for inference.


Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms

Author: David J. C. MacKay

Publisher: Cambridge University Press

Published: 2003-09-25

Total Pages: 694

ISBN-13: 9780521642989

DOWNLOAD EBOOK

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.


Asymptotic Theory for Econometricians

Asymptotic Theory for Econometricians

Author: Halbert White

Publisher: Academic Press

Published: 2014-06-28

Total Pages: 241

ISBN-13: 1483294420

DOWNLOAD EBOOK

This book is intended to provide a somewhat more comprehensive and unified treatment of large sample theory than has been available previously and to relate the fundamental tools of asymptotic theory directly to many of the estimators of interest to econometricians. In addition, because economic data are generated in a variety of different contexts (time series, cross sections, time series--cross sections), we pay particular attention to the similarities and differences in the techniques appropriate to each of these contexts.


Designing Social Inquiry

Designing Social Inquiry

Author: Gary King

Publisher: Princeton University Press

Published: 1994-05-22

Total Pages: 259

ISBN-13: 0691034710

DOWNLOAD EBOOK

Designing Social Inquiry focuses on improving qualitative research, where numerical measurement is either impossible or undesirable. What are the right questions to ask? How should you define and make inferences about causal effects? How can you avoid bias? How many cases do you need, and how should they be selected? What are the consequences of unavoidable problems in qualitative research, such as measurement error, incomplete information, or omitted variables? What are proper ways to estimate and report the uncertainty of your conclusions?


Bayesian Inference for Partially Identified Models

Bayesian Inference for Partially Identified Models

Author: Paul Gustafson

Publisher: CRC Press

Published: 2020-06-30

Total Pages: 196

ISBN-13: 9780367570538

DOWNLOAD EBOOK

This book shows how the Bayesian approach to inference is applicable to partially identified models (PIMs) and examines the performance of Bayesian procedures in partially identified contexts. Drawing on his many years of research in this area, the author presents a thorough overview of the statistical theory, properties, and applications of PIM


Statistical Inference as Severe Testing

Statistical Inference as Severe Testing

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2018-09-20

Total Pages: 503

ISBN-13: 1108563309

DOWNLOAD EBOOK

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.


The Book of Why

The Book of Why

Author: Judea Pearl

Publisher: Basic Books

Published: 2018-05-15

Total Pages: 432

ISBN-13: 0465097618

DOWNLOAD EBOOK

A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.


Asymptotic Theory Of Quantum Statistical Inference: Selected Papers

Asymptotic Theory Of Quantum Statistical Inference: Selected Papers

Author: Masahito Hayashi

Publisher: World Scientific

Published: 2005-02-21

Total Pages: 553

ISBN-13: 981448198X

DOWNLOAD EBOOK

Quantum statistical inference, a research field with deep roots in the foundations of both quantum physics and mathematical statistics, has made remarkable progress since 1990. In particular, its asymptotic theory has been developed during this period. However, there has hitherto been no book covering this remarkable progress after 1990; the famous textbooks by Holevo and Helstrom deal only with research results in the earlier stage (1960s-1970s).This book presents the important and recent results of quantum statistical inference. It focuses on the asymptotic theory, which is one of the central issues of mathematical statistics and had not been investigated in quantum statistical inference until the early 1980s. It contains outstanding papers after Holevo's textbook, some of which are of great importance but are not available now.The reader is expected to have only elementary mathematical knowledge, and therefore much of the content will be accessible to graduate students as well as research workers in related fields. Introductions to quantum statistical inference have been specially written for the book. Asymptotic Theory of Quantum Statistical Inference: Selected Papers will give the reader a new insight into physics and statistical inference.