From one of America's premier fiction authors--a writer ahead of his time--comes a sampling of the intimate, funny, and odd stories he has written over two decades about the frailties of relationships and the ways we look at each other when we mean things we cannot bring ourselves to say.
A must-read for anyone who makes business decisions that have a major financial impact. As the recent collapse on Wall Street shows, we are often ill-equipped to deal with uncertainty and risk. Yet every day we base our personal and business plans on uncertainties, whether they be next month’s sales, next year’s costs, or tomorrow’s stock price. In The Flaw of Averages, Sam Savageknown for his creative exposition of difficult subjects describes common avoidable mistakes in assessing risk in the face of uncertainty. Along the way, he shows why plans based on average assumptions are wrong, on average, in areas as diverse as healthcare, accounting, the War on Terror, and climate change. In his chapter on Sex and the Central Limit Theorem, he bravely grasps the literary third rail of gender differences. Instead of statistical jargon, Savage presents complex concepts in plain English. In addition, a tightly integrated web site contains numerous animations and simulations to further connect the seat of the reader’s intellect to the seat of their pants. The Flaw of Averages typically results when someone plugs a single number into a spreadsheet to represent an uncertain future quantity. Savage finishes the book with a discussion of the emerging field of Probability Management, which cures this problem though a new technology that can pack thousands of numbers into a single spreadsheet cell. Praise for The Flaw of Averages “Statistical uncertainties are pervasive in decisions we make every day in business, government, and our personal lives. Sam Savage’s lively and engaging book gives any interested reader the insight and the tools to deal effectively with those uncertainties. I highly recommend The Flaw of Averages.” —William J. Perry, Former U.S. Secretary of Defense “Enterprise analysis under uncertainty has long been an academic ideal. . . . In this profound and entertaining book, Professor Savage shows how to make all this practical, practicable, and comprehensible.” —Harry Markowitz, Nobel Laureate in Economics
The Law of Large Numbers deals with three types of law of large numbers according to the following convergences: stochastic, mean, and convergence with probability 1. The book also investigates the rate of convergence and the laws of the iterated logarithm. It reviews measure theory, probability theory, stochastic processes, ergodic theory, orthogonal series, Huber spaces, Banach spaces, as well as the special concepts and general theorems of the laws of large numbers. The text discusses the laws of large numbers of different classes of stochastic processes, such as independent random variables, orthogonal random variables, stationary sequences, symmetrically dependent random variables and their generalizations, and also Markov chains. It presents other laws of large numbers for subsequences of sequences of random variables, including some general laws of large numbers which are not related to any concrete class of stochastic processes. The text cites applications of the theorems, as in numbers theory, statistics, and information theory. The text is suitable for mathematicians, economists, scientists, statisticians, or researchers involved with the probability and relative frequency of large numbers.
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Are you above average? Is your child an A student? Is your employee an introvert or an extrovert? Every day we are measured against the yardstick of averages, judged according to how closely we come to it or how far we deviate from it. The assumption that metrics comparing us to an average—like GPAs, personality test results, and performance review ratings—reveal something meaningful about our potential is so ingrained in our consciousness that we don’t even question it. That assumption, says Harvard’s Todd Rose, is spectacularly—and scientifically—wrong. In The End of Average, Rose, a rising star in the new field of the science of the individual shows that no one is average. Not you. Not your kids. Not your employees. This isn’t hollow sloganeering—it’s a mathematical fact with enormous practical consequences. But while we know people learn and develop in distinctive ways, these unique patterns of behaviors are lost in our schools and businesses which have been designed around the mythical “average person.” This average-size-fits-all model ignores our differences and fails at recognizing talent. It’s time to change it. Weaving science, history, and his personal experiences as a high school dropout, Rose offers a powerful alternative to understanding individuals through averages: the three principles of individuality. The jaggedness principle (talent is always jagged), the context principle (traits are a myth), and the pathways principle (we all walk the road less traveled) help us understand our true uniqueness—and that of others—and how to take full advantage of individuality to gain an edge in life. Read this powerful manifesto in the ranks of Drive, Quiet, and Mindset—and you won’t see averages or talent in the same way again.
When as a practicing lawyer I published my ?rst article on statistical evidence in 1966, the editors of the Harvard Law Review told me that a mathematical equa- 1 tion had never before appeared in the review. This hardly seems possible - but if they meant a serious mathematical equation, perhaps they were right. Today all that has changed in legal academia. Whole journals are devoted to scienti?c methods in law or empirical studies of legal institutions. Much of this work involves statistics. Columbia Law School, where I teach, has a professor of law and epidemiology and other law schools have similar “law and” professorships. Many offer courses on statistics (I teach one) or, more broadly, on law and social science. The same is true of practice. Where there are data to parse in a litigation, stat- ticians and other experts using statistical tools now frequently testify. And judges must understand them. In 1993, in its landmark Daubert decision, the Supreme Court commanded federal judges to penetrate scienti?c evidence and ?nd it “re- 2 liable” before allowing it in evidence. It is emblematic of the rise of statistics in the law that the evidence at issue in that much-cited case included a series of epidemiological studies. The Supreme Court’s new requirement made the Federal Judicial Center’s Reference Manual on Scienti?c Evidence, which appeared at about the same time, a best seller. It has several important chapters on statistics.
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books