This conference is the ninth in a biennial series dedicated to QCD and strong-interaction dynamics. Plenary talks cover both experiments, including the latest LHC results, and the most recent theoretical developments on hadron spectroscopy, lattice calculations, confinement and deconfinement. Parallel sessions are devoted to: Vacuum structure and confinement, light and heavy quarks, deconfinement, QCD and new Physics as well as nuclear and astroparticle Physics.
The series Advances in the Physics of Particles and Nuclei (APPN) is devoted to the archiving, in printed high-quality book format, of the comprehensive, long shelf-life reviews published in The European Physical Journal A and C. APPN will be of benefit in particular to those librarians and research groups, who have chosen to have only electronic access to these journals. Occasionally, original material in review format and refereed by the series’ editorial board will also be included. This volume contains the following two reviews: Nora Brambilla et al.: Heavy Quarkonium: Progress, Puzzles and Opportunities Daniel Wicke: Properties of the Top Quark
What is good science? What goal--if any--is the proper end of scientific activity? Is there a legitimating authority that scientists mayclaim? Howserious athreat are the anti-science movements? These questions have long been debated but, as Gerald Holton points out, every era must offer its own responses. This book examines these questions not in the abstract but shows their historic roots and the answers emerging from the scientific and political controversies of this century. Employing the case-study method and the concept of scientific thematathat he has pioneered, Holton displays the broad scope of his insight into the workings of science: from the influence of Ernst Mach on twentiethcentury physicists, biologists, psychologists, and other thinkers to the rhetorical strategies used in the work of Albert Einstein, Niels Bohr, and others; from the bickering between Thomas Jefferson and the U.S. Congress over the proper form of federal sponsorship of scientific research to philosophical debates since Oswald Spengier over whether our scientific knowledge will ever be "complete." In a masterful final chapter, Holton scrutinizes the "anti-science phenomenon," the increasingly common opposition to science as practiced today. He approaches this contentious issue by examining the world views and political ambitions of the proponents of science as well as those of its opponents-the critics of "establishment science" (including even those who fear that science threatens to overwhelm the individual in the postmodern world) and the adherents of "alternative science" (Creationists, New Age "healers," astrologers). Through it all runs the thread of the author's deep historical knowledge and his humanistic understanding of science in modern culture. Science and Anti-Science will be of great interest not only to scientists and scholars in the field of science studies but also to educators, policymalcers, and all those who wish to gain a fuller understanding of challenges to and doubts about the role of science in our lives today.
CIPANP 2009 explores areas of common interest between nuclear physicists, high energy (particle) physicists and astrophysicists. These areas range from studies of the strong interactions that bind nuclei together to physics of the very early Universe and include such topics as neutrinos, hadron physics, spin physics, heavy ion physics, QCD and heavy flavor physics. The Conference papers include descriptions of searches for "new physics", phenomena that cannot be accounted for by current theories.
Over 40 renowned scientists from all around the world discuss the work and influence of Werner Heisenberg. The papers result from the symposium held by the Alexander von Humboldt-Stiftung on the occasion of the 100th anniversary of Heisenberg's birth, one of the most important physicists of the 20th century and cofounder of modern-day quantum mechanics. Taking atomic and laser physics as their starting point, the scientists illustrate the impact of Heisenberg's theories on astroparticle physics, high-energy physics and string theory right up to processing quantum information.