The Mathematical Theory of Symmetry in Solids

The Mathematical Theory of Symmetry in Solids

Author: Christopher Bradley

Publisher: Oxford University Press

Published: 2010

Total Pages: 758

ISBN-13: 0199582580

DOWNLOAD EBOOK

This classic book gives, in extensive tables, the irreducible representations of the crystallographic point groups and space groups. These are useful in studying the eigenvalues and eigenfunctions of a particle or quasi-particle in a crystalline solid. The theory is extended to the corepresentations of the Shubnikov groups.


Representation of Crystallographic Space Groups

Representation of Crystallographic Space Groups

Author: Kovalev

Publisher: CRC Press

Published: 1993-12-08

Total Pages: 410

ISBN-13: 9782881249341

DOWNLOAD EBOOK

This new edition of Kovalev's renowned text (first English edition, 1965) presents all the irreducible representations (IRs) and irreducible corepresentations (ICRs) for the 230 crystallographic space groups. In order to give readers the opportunity of representing generally the entire crystallographic symmetry, the method of inducing an IR of the local groups is presented first, and then complete lists of induced representations (InRs) which allow the calculation of the microstructure of any crystal (already known or not yet discovered, but geometrically not forbidden) in any physical question. For research students and researchers in theoretical aspects of solid state physics, crystallography, and space group theory. Translated from the second Russian edition of 1987. Annotation copyright by Book News, Inc., Portland, OR


Group Theory

Group Theory

Author: Mildred S. Dresselhaus

Publisher: Springer Science & Business Media

Published: 2007-12-18

Total Pages: 576

ISBN-13: 3540328998

DOWNLOAD EBOOK

This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.


Symmetry

Symmetry

Author: R. McWeeny

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 263

ISBN-13: 1483226247

DOWNLOAD EBOOK

Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.


Second-Order Phase Transitions and the Irreducible Representation of Space Groups

Second-Order Phase Transitions and the Irreducible Representation of Space Groups

Author: Hugo F. Franzen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 108

ISBN-13: 3642489478

DOWNLOAD EBOOK

The lecture notes presented in this volume were developed over a period of time that originated with the investigation of a research problem, the distortion from NiAs-type to MnP-type, the group-theoretical implications of which were investigated in collaboration with Professors F. Jellinek and C. Haas of the Laboratory for Inorganic Chemistry at the University of Groningen during the 1973-1974 year. This distortion provides the major example that is worked through in the notes. The subject matter of the notes has been incorporated in part in the lectures of a course in Solid State Chemistry taught several times at Iowa State University, and formed the basis of a series of lectures presented at the Max-Planck Institute for Solid State Research in Stuttgart during 1981- 19821 and as part of a Solid State Chemistry course taught during the spring of 1982 at Arizona State University in Tempe. I wish here to express my gratitude to the Max-Planck Institute for Solid State Research and to Arizona State University for the opportunity and support they provided during the time I was developing and writing the lecture notes of this volume. I wish also to thank the many colleagues and students who have offered comments and suggestions that have improved the accuracy and readability of the notes, and who have provided stimulation through discussion of the ideas presented here. am especially indebted to Professors C. Haas and F.


Primer for Point and Space Groups

Primer for Point and Space Groups

Author: Richard Liboff

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 232

ISBN-13: 1468493833

DOWNLOAD EBOOK

Written in the spirit of Liboff's acclaimed text on Quantum Mechanics, this introduction to group theory offers an exceptionally clear presentation with a good sense of what to explain, which examples are most appropriate, and when to give a counter-example.