The Interface Between Convex Geometry and Harmonic Analysis

The Interface Between Convex Geometry and Harmonic Analysis

Author: Alexander Koldobsky

Publisher: American Mathematical Soc.

Published:

Total Pages: 128

ISBN-13: 9780821883358

DOWNLOAD EBOOK

"The book is written in the form of lectures accessible to graduate students. This approach allows the reader to clearly see the main ideas behind the method, rather than to dwell on technical difficulties. The book also contains discussions of the most recent advances in the subject. The first section of each lecture is a snapshot of that lecture. By reading each of these sections first, novices can gain an overview of the subject, then return to the full text for more details."--BOOK JACKET.


Recent Advances in Harmonic Analysis and Applications

Recent Advances in Harmonic Analysis and Applications

Author: Dmitriy Bilyk

Publisher: Springer Science & Business Media

Published: 2012-10-16

Total Pages: 400

ISBN-13: 1461445655

DOWNLOAD EBOOK

Recent Advances in Harmonic Analysis and Applications features selected contributions from the AMS conference which took place at Georgia Southern University, Statesboro in 2011 in honor of Professor Konstantin Oskolkov's 65th birthday. The contributions are based on two special sessions, namely "Harmonic Analysis and Applications" and "Sparse Data Representations and Applications." Topics covered range from Banach space geometry to classical harmonic analysis and partial differential equations. Survey and expository articles by leading experts in their corresponding fields are included, and the volume also features selected high quality papers exploring new results and trends in Muckenhoupt-Sawyer theory, orthogonal polynomials, trigonometric series, approximation theory, Bellman functions and applications in differential equations. Graduate students and researchers in analysis will be particularly interested in the articles which emphasize remarkable connections between analysis and analytic number theory. The readers will learn about recent mathematical developments and directions for future work in the unexpected and surprising interaction between abstract problems in additive number theory and experimentally discovered optical phenomena in physics. This book will be useful for number theorists, harmonic analysts, algorithmists in multi-dimensional signal processing and experts in physics and partial differential equations.


Harmonic Analysis

Harmonic Analysis

Author: Palle E.T. Jorgensen

Publisher: American Mathematical Soc.

Published: 2018-10-30

Total Pages: 281

ISBN-13: 1470448807

DOWNLOAD EBOOK

There is a recent and increasing interest in harmonic analysis of non-smooth geometries. Real-world examples where these types of geometry appear include large computer networks, relationships in datasets, and fractal structures such as those found in crystalline substances, light scattering, and other natural phenomena where dynamical systems are present. Notions of harmonic analysis focus on transforms and expansions and involve dual variables. In this book on smooth and non-smooth harmonic analysis, the notion of dual variables will be adapted to fractals. In addition to harmonic analysis via Fourier duality, the author also covers multiresolution wavelet approaches as well as a third tool, namely, L2 spaces derived from appropriate Gaussian processes. The book is based on a series of ten lectures delivered in June 2018 at a CBMS conference held at Iowa State University.


The Mutually Beneficial Relationship of Graphs and Matrices

The Mutually Beneficial Relationship of Graphs and Matrices

Author: Richard A. Brualdi

Publisher: American Mathematical Soc.

Published: 2011-07-06

Total Pages: 110

ISBN-13: 0821853155

DOWNLOAD EBOOK

Graphs and matrices enjoy a fascinating and mutually beneficial relationship. This interplay has benefited both graph theory and linear algebra. In one direction, knowledge about one of the graphs that can be associated with a matrix can be used to illuminate matrix properties and to get better information about the matrix. Examples include the use of digraphs to obtain strong results on diagonal dominance and eigenvalue inclusion regions and the use of the Rado-Hall theorem to deduce properties of special classes of matrices. Going the other way, linear algebraic properties of one of the matrices associated with a graph can be used to obtain useful combinatorial information about the graph. The adjacency matrix and the Laplacian matrix are two well-known matrices associated to a graph, and their eigenvalues encode important information about the graph. Another important linear algebraic invariant associated with a graph is the Colin de Verdiere number, which, for instance, characterizes certain topological properties of the graph. This book is not a comprehensive study of graphs and matrices. The particular content of the lectures was chosen for its accessibility, beauty, and current relevance, and for the possibility of enticing the audience to want to learn more.


Asymptotic Geometric Analysis, Part II

Asymptotic Geometric Analysis, Part II

Author: Shiri Artstein-Avidan

Publisher: American Mathematical Society

Published: 2021-12-13

Total Pages: 645

ISBN-13: 1470463601

DOWNLOAD EBOOK

This book is a continuation of Asymptotic Geometric Analysis, Part I, which was published as volume 202 in this series. Asymptotic geometric analysis studies properties of geometric objects, such as normed spaces, convex bodies, or convex functions, when the dimensions of these objects increase to infinity. The asymptotic approach reveals many very novel phenomena which influence other fields in mathematics, especially where a large data set is of main concern, or a number of parameters which becomes uncontrollably large. One of the important features of this new theory is in developing tools which allow studying high parametric families. Among the topics covered in the book are measure concentration, isoperimetric constants of log-concave measures, thin-shell estimates, stochastic localization, the geometry of Gaussian measures, volume inequalities for convex bodies, local theory of Banach spaces, type and cotype, the Banach-Mazur compactum, symmetrizations, restricted invertibility, and functional versions of geometric notions and inequalities.


Lectures on Convex Geometry

Lectures on Convex Geometry

Author: Daniel Hug

Publisher: Springer Nature

Published: 2020-08-27

Total Pages: 287

ISBN-13: 3030501809

DOWNLOAD EBOOK

This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.


Families of Riemann Surfaces and Weil-Petersson Geometry

Families of Riemann Surfaces and Weil-Petersson Geometry

Author: Scott A. Wolpert

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 130

ISBN-13: 0821849867

DOWNLOAD EBOOK

Provides a generally self-contained course for graduate students and postgraduates on deformations of hyperbolic surfaces and the geometry of the Weil-Petersson metric. It also offers an update for researchers; material not otherwise found in a single reference is included; and aunified approach is provided for an array of results.


Tropical Geometry and Mirror Symmetry

Tropical Geometry and Mirror Symmetry

Author: Mark Gross

Publisher: American Mathematical Soc.

Published: 2011-01-20

Total Pages: 338

ISBN-13: 0821852329

DOWNLOAD EBOOK

Tropical geometry provides an explanation for the remarkable power of mirror symmetry to connect complex and symplectic geometry. The main theme of this book is the interplay between tropical geometry and mirror symmetry, culminating in a description of the recent work of Gross and Siebert using log geometry to understand how the tropical world relates the A- and B-models in mirror symmetry. The text starts with a detailed introduction to the notions of tropical curves and manifolds, and then gives a thorough description of both sides of mirror symmetry for projective space, bringing together material which so far can only be found scattered throughout the literature. Next follows an introduction to the log geometry of Fontaine-Illusie and Kato, as needed for Nishinou and Siebert's proof of Mikhalkin's tropical curve counting formulas. This latter proof is given in the fourth chapter. The fifth chapter considers the mirror, B-model side, giving recent results of the author showing how tropical geometry can be used to evaluate the oscillatory integrals appearing. The final chapter surveys reconstruction results of the author and Siebert for ``integral tropical manifolds.'' A complete version of the argument is given in two dimensions.


Ergodic Theory, Groups, and Geometry

Ergodic Theory, Groups, and Geometry

Author: Robert J. Zimmer

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 103

ISBN-13: 0821809806

DOWNLOAD EBOOK

"The study of group actions on manifolds is the meeting ground of a variety of mathematical areas. In particular, interesting geometric insights can be obtained by applying measure-theoretic techniques. This book provides an introduction to some of the important methods, major developments, and open problems in the subject. It is slightly expanded from lectures given by Zimmer at the CBMS conference at the University of Minnesota. The main text presents a perspective on the field as it was at that time. Comments at the end of each chapter provide selected suggestions for further reading, including references to recent developments."--BOOK JACKET.


Analysis of Stochastic Partial Differential Equations

Analysis of Stochastic Partial Differential Equations

Author: Davar Khoshnevisan

Publisher: American Mathematical Soc.

Published: 2014-06-11

Total Pages: 127

ISBN-13: 147041547X

DOWNLOAD EBOOK

The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly the case, the forcing is a "random noise," also known as a "generalized random field." At several points in the lectures, there are examples that highlight the phenomenon that stochastic PDEs are not a subset of PDEs. In fact, the introduction of noise in some partial differential equations can bring about not a small perturbation, but truly fundamental changes to the system that the underlying PDE is attempting to describe. The topics covered include a brief introduction to the stochastic heat equation, structure theory for the linear stochastic heat equation, and an in-depth look at intermittency properties of the solution to semilinear stochastic heat equations. Specific topics include stochastic integrals à la Norbert Wiener, an infinite-dimensional Itô-type stochastic integral, an example of a parabolic Anderson model, and intermittency fronts. There are many possible approaches to stochastic PDEs. The selection of topics and techniques presented here are informed by the guiding example of the stochastic heat equation. A co-publication of the AMS and CBMS.