The Oxford Handbook of Invertebrate Neurobiology

The Oxford Handbook of Invertebrate Neurobiology

Author: John H. Byrne

Publisher: Oxford University Press

Published: 2019-01-29

Total Pages: 777

ISBN-13: 0190456779

DOWNLOAD EBOOK

Invertebrates have proven to be extremely useful model systems for gaining insights into the neural and molecular mechanisms of sensory processing, motor control and higher functions such as feeding behavior, learning and memory, navigation, and social behavior. A major factor in their enormous contributions to neuroscience is the relative simplicity of invertebrate nervous systems. In addition, some invertebrates, primarily the molluscs, have large cells, which allow analyses to take place at the level of individually identified neurons. Individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate model systems such as Drosophila and Caenorhabditis elegans offer tremendous advantages for obtaining insights into the neuronal bases of behavior through the application of genetic approaches. The Oxford Handbook of Invertebrate Neurobiology reviews the many neurobiological principles that have emerged from invertebrate analyses, such as motor pattern generation, mechanisms of synaptic transmission, and learning and memory. It also covers general features of the neurobiology of invertebrate circadian rhythms, development, and regeneration and reproduction. Some neurobiological phenomena are species-specific and diverse, especially in the domain of the neuronal control of locomotion and camouflage. Thus, separate chapters are provided on the control of swimming in annelids, crustaea and molluscs, locomotion in hexapods, and camouflage in cephalopods. Unique features of the handbook include chapters that review social behavior and intentionality in invertebrates. A chapter is devoted to summarizing past contributions of invertebrates to the understanding of nervous systems and identifying areas for future studies that will continue to advance that understanding.


Coding Properties in Invertebrate Sensory Systems

Coding Properties in Invertebrate Sensory Systems

Author: Sylvia Anton

Publisher: Frontiers Media SA

Published: 2017-03-07

Total Pages: 229

ISBN-13: 2889451062

DOWNLOAD EBOOK

Animals rely on sensory input from their environment for survival and reproduction. Depending on the importance of a signal for a given species, accuracy of sensory coding might vary from pure detection up to precise coding of intensity, quality and temporal features of the signal. Highly sophisticated sense organs and related central nervous sensory pathways can be of utmost importance for animals in a complex environment and when using advanced communication systems. In sensory systems different anatomical and physiological features have evolved to optimally encode behaviourally relevant signals at the level of sense organs and central processing. The wide range of organizational complexity, in combination with their relatively simple and accessible nervous systems, makes invertebrates excellent models to study general sensory coding principles. The contributions to this e-book illustrate on one hand particular features of specific sensory systems, and on the other hand indicate not only common features of sensory coding across invertebrate phyla, but also similar processing principles of complex stimuli between different sensory modalities. The chapters show that the extraction of behaviourally relevant signals from all environmental stimuli, as well as the detection of low intensity signals and the analysis of temporal features can be similar across sensory modalities, including olfaction, vision, mechanoreception, and heat perception.


Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology

Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology

Author: Poramate Manoonpong

Publisher: Frontiers Media SA

Published: 2018-10-11

Total Pages: 278

ISBN-13: 2889456056

DOWNLOAD EBOOK

How can neural and morphological computations be effectively combined and realized in embodied closed-loop systems (e.g., robots) such that they can become more like living creatures in their level of performance? Understanding this will lead to new technologies and a variety of applications. To tackle this research question, here, we bring together experts from different fields (including Biology, Computational Neuroscience, Robotics, and Artificial Intelligence) to share their recent findings and ideas and to update our research community. This eBook collects 17 cutting edge research articles, covering neural and morphological computations as well as the transfer of results to real world applications, like prosthesis and orthosis control and neuromorphic hardware implementation.


Arthropod Brains

Arthropod Brains

Author: Nicholas James Strausfeld

Publisher: Harvard University Press

Published: 2012-01-02

Total Pages: 849

ISBN-13: 0674046331

DOWNLOAD EBOOK

In The Descent of Man, Charles Darwin proposed that an ant’s brain, no larger than a pin’s head, must be sophisticated to accomplish all that it does. Yet today many people still find it surprising that insects and other arthropods show behaviors that are much more complex than innate reflexes. They are products of versatile brains which, in a sense, think. Fascinating in their own right, arthropods provide fundamental insights into how brains process and organize sensory information to produce learning, strategizing, cooperation, and sociality. Nicholas Strausfeld elucidates the evolution of this knowledge, beginning with nineteenth-century debates about how similar arthropod brains were to vertebrate brains. This exchange, he shows, had a profound and far-reaching impact on attitudes toward evolution and animal origins. Many renowned scientists, including Sigmund Freud, cut their professional teeth studying arthropod nervous systems. The greatest neuroanatomist of them all, Santiago Ramón y Cajal—founder of the neuron doctrine—was awed by similarities between insect and mammalian brains. Writing in a style that will appeal to a broad readership, Strausfeld weaves anatomical observations with evidence from molecular biology, neuroethology, cladistics, and the fossil record to explore the neurobiology of the largest phylum on earth—and one that is crucial to the well-being of our planet. Highly informative and richly illustrated, Arthropod Brains offers an original synthesis drawing on many fields, and a comprehensive reference that will serve biologists for years to come.


Neurobiology of Chemical Communication

Neurobiology of Chemical Communication

Author: Carla Mucignat-Caretta

Publisher: CRC Press

Published: 2014-02-14

Total Pages: 614

ISBN-13: 1466553413

DOWNLOAD EBOOK

Intraspecific communication involves the activation of chemoreceptors and subsequent activation of different central areas that coordinate the responses of the entire organism—ranging from behavioral modification to modulation of hormones release. Animals emit intraspecific chemical signals, often referred to as pheromones, to advertise their presence to members of the same species and to regulate interactions aimed at establishing and regulating social and reproductive bonds. In the last two decades, scientists have developed a greater understanding of the neural processing of these chemical signals. Neurobiology of Chemical Communication explores the role of the chemical senses in mediating intraspecific communication. Providing an up-to-date outline of the most recent advances in the field, it presents data from laboratory and wild species, ranging from invertebrates to vertebrates, from insects to humans. The book examines the structure, anatomy, electrophysiology, and molecular biology of pheromones. It discusses how chemical signals work on different mammalian and non-mammalian species and includes chapters on insects, Drosophila, honey bees, amphibians, mice, tigers, and cattle. It also explores the controversial topic of human pheromones. An essential reference for students and researchers in the field of pheromones, this is also an ideal resource for those working on behavioral phenotyping of animal models and persons interested in the biology/ecology of wild and domestic species.