hp-Finite Element Methods for Singular Perturbations

hp-Finite Element Methods for Singular Perturbations

Author: Jens M. Melenk

Publisher: Springer

Published: 2004-10-19

Total Pages: 331

ISBN-13: 354045781X

DOWNLOAD EBOOK

Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.


Hp-Finite Element Methods for Singular Perturbations

Hp-Finite Element Methods for Singular Perturbations

Author: Jens M. Melenk

Publisher: Springer Science & Business Media

Published: 2002-10-10

Total Pages: 340

ISBN-13: 9783540442011

DOWNLOAD EBOOK

Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.


Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Author: John J H Miller

Publisher: World Scientific

Published: 2012-02-29

Total Pages: 191

ISBN-13: 9814452777

DOWNLOAD EBOOK

Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Author: Marco L. Bittencourt

Publisher: Springer

Published: 2017-11-08

Total Pages: 700

ISBN-13: 9783319658698

DOWNLOAD EBOOK

This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.


Robust Numerical Methods for Singularly Perturbed Differential Equations

Robust Numerical Methods for Singularly Perturbed Differential Equations

Author: Hans-Görg Roos

Publisher: Springer Science & Business Media

Published: 2008-09-17

Total Pages: 599

ISBN-13: 3540344675

DOWNLOAD EBOOK

This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.


The Finite Element Method Set

The Finite Element Method Set

Author: O. C. Zienkiewicz

Publisher: Elsevier

Published: 2005-11-25

Total Pages: 1863

ISBN-13: 0080531679

DOWNLOAD EBOOK

The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference


Analyzing Multiscale Phenomena Using Singular Perturbation Methods

Analyzing Multiscale Phenomena Using Singular Perturbation Methods

Author: Jane Cronin

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 201

ISBN-13: 0821809296

DOWNLOAD EBOOK

To understand multiscale phenomena, it is essential to employ asymptotic methods to construct approximate solutions and to design effective computational algorithms. This volume consists of articles based on the AMS Short Course in Singular Perturbations held at the annual Joint Mathematics Meetings in Baltimore (MD). Leading experts discussed the following topics which they expand upon in the book: boundary layer theory, matched expansions, multiple scales, geometric theory, computational techniques, and applications in physiology and dynamic metastability. Readers will find that this text offers an up-to-date survey of this important field with numerous references to the current literature, both pure and applied.


Finite Elements III

Finite Elements III

Author: Alexandre Ern

Publisher: Springer Nature

Published: 2021-03-29

Total Pages: 417

ISBN-13: 3030573486

DOWNLOAD EBOOK

This book is the third volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume III is divided into 28 chapters. The first eight chapters focus on the symmetric positive systems of first-order PDEs called Friedrichs' systems. This part of the book presents a comprehensive and unified treatment of various stabilization techniques from the existing literature. It discusses applications to advection and advection-diffusion equations and various PDEs written in mixed form such as Darcy and Stokes flows and Maxwell's equations. The remainder of Volume III addresses time-dependent problems: parabolic equations (such as the heat equation), evolution equations without coercivity (Stokes flows, Friedrichs' systems), and nonlinear hyperbolic equations (scalar conservation equations, hyperbolic systems). It offers a fresh perspective on the analysis of well-known time-stepping methods. The last five chapters discuss the approximation of hyperbolic equations with finite elements. Here again a new perspective is proposed. These chapters should convince the reader that finite elements offer a good alternative to finite volumes to solve nonlinear conservation equations.