If you have not heard about cohomology, The Heart of Cohomology may be suited for you. The book gives Fundamental notions in cohomology for examples, functors, representable functors, Yoneda embedding, derived functors, spectral sequences, derived categories are explained in elementary fashion. Applications to sheaf cohomology. In addition, the book examines cohomological aspects of D-modules and of the computation of zeta functions of the Weierstrass family.
There are several approaches to quantum gravity. The most well known approach is string theory (M-theory), followed by loop quantum gravity. Temporal topos (t-topos) is an application of a modified topos over a category with a Grothendieck topology. We give explicit formulations in terms of t-topos for characteristic microcosmic phenomena such as wave-particle duality, uncertainty principle, and quantum entanglement. In order to claim that t-topos theory is leading to quantum gravity with the same mathematical model, i.e., t-topos, we need to formulate also relativistic notions as a light cone, gravitational effect by mass, black hole, and big bang. The main devises of t-topos as a unifying theory of microcosm and macrocosm are the notions of a (micro) decomposition of a presheaf and a (micro) factorization of a morphism of a t-site. Before the chapter on t-topos, we provide the necessary mathematical background from categories, sheaves, cohomologies, and D-modules, which can be useful to study the connections to twister covering cohomology, abstract differential geometry, and p-adic string theory. About the author Goro C. Kato is a professor of mathematics at California Polytechnic State University, San Luis Obispo, C. A, and the author of research monographs in algebraic geometry (cohomological algebra & p-adic cohomology) The Heart of Cohomology, published by Springer, Kohomoloji No Kokoro (in Japanese), published by Iwanami-Shoten, and in algebraic analysis (D-modules) Fundamentals of Algebraic Microlocal Analysis, (coauthor: Daniele Struppa), published by Taylor-Francis. Goro C. Kato belongs to the Association of the Members of the Institute for Advanced Study, Princeton, N. J.
Algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes was explained in Algebraic Geometry 1: From Algebraic Varieties to Schemes. In this volume, the author turns to the theory of sheaves and their cohomology. A sheaf is a way of keeping track of local information defined on a topological space, such as the local holomorphic functions on a complex manifold or the local sections of a vector bundle. To study schemes, it is useful to study the sheaves defined on them, especially the coherent and quasicoherent sheaves.
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
It is a widespread opinion among experts that (continuous) bounded cohomology cannot be interpreted as a derived functor and that triangulated methods break down. The author proves that this is wrong. He uses the formalism of exact categories and their derived categories in order to construct a classical derived functor on the category of Banach $G$-modules with values in Waelbroeck's abelian category. This gives us an axiomatic characterization of this theory for free, and it is a simple matter to reconstruct the classical semi-normed cohomology spaces out of Waelbroeck's category. The author proves that the derived categories of right bounded and of left bounded complexes of Banach $G$-modules are equivalent to the derived category of two abelian categories (one for each boundedness condition), a consequence of the theory of abstract truncation and hearts of $t$-structures. Moreover, he proves that the derived categories of Banach $G$-modules can be constructed as the homotopy categories of model structures on the categories of chain complexes of Banach $G$-modules, thus proving that the theory fits into yet another standard framework of homological and homotopical algebra.
This book presents a novel development of fundamental and fascinating aspects of algebraic topology and mathematical physics: 'extra-ordinary' and further generalized cohomology theories enhanced to 'twisted' and differential-geometric form, with focus on, firstly, their rational approximation by generalized Chern character maps, and then, the resulting charge quantization laws in higher n-form gauge field theories appearing in string theory and the classification of topological quantum materials.Although crucial for understanding famously elusive effects in strongly interacting physics, the relevant higher non-abelian cohomology theory ('higher gerbes') has had an esoteric reputation and remains underdeveloped.Devoted to this end, this book's theme is that various generalized cohomology theories are best viewed through their classifying spaces (or moduli stacks) — not necessarily infinite-loop spaces — from which perspective the character map is really an incarnation of the fundamental theorem of rational homotopy theory, thereby not only uniformly subsuming the classical Chern character and a multitude of scattered variants that have been proposed, but now seamlessly applicable in the hitherto elusive generality of (twisted, differential, and) non-abelian cohomology.In laying out this result with plenty of examples, this book provides a modernized introduction and review of fundamental classical topics: 1. abstract homotopy theory via model categories; 2. generalized cohomology in its homotopical incarnation; 3. rational homotopy theory seen via homotopy Lie theory, whose fundamental theorem we recast as a (twisted) non-abelian de Rham theorem, which naturally induces the (twisted) non-abelian character map.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.