The Geometry of the Octonions

The Geometry of the Octonions

Author: Tevian Dray

Publisher: World Scientific

Published: 2015

Total Pages: 229

ISBN-13: 981440182X

DOWNLOAD EBOOK

There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.Contents: Introduction"Number Systems: "The Geometry of the Complex NumbersThe Geometry of the QuaternionsThe Geometry of the OctonionsOther Number Systems"Symmetry Groups: "Some Orthogonal GroupsSome Unitary GroupsSome Symplectic GroupsSymmetry Groups over Other Division AlgebrasLie Groups and Lie AlgebrasThe Exceptional Groups"Applications: "Division Algebras in MathematicsOctonionic Eigenvalue ProblemsThe Physics of the OctonionsMagic Squares Readership: Advanced ubdergraduate and graduate students and faculty in mathematics and physics; non-experts with moderately sophisticated mathematics background. Key Features: This book is easily digestible by a large audience wanting to know the elementary introduction to octanionsSuitable for any reader with a grasp of the complex numbers, although familiarity with non-octonionic versions of some of the other topics would be helpfulMany open problems are very accessibleAdvanced topics covered are quite sophisticated, leading up to a clear discussion of (one representation of) the exceptional Lie algebras and their associated root diagrams, and of the octonionic projective spaces on which they act


On Quaternions and Octonions

On Quaternions and Octonions

Author: John H. Conway

Publisher: CRC Press

Published: 2003-01-23

Total Pages: 172

ISBN-13: 1439864187

DOWNLOAD EBOOK

This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less f


The Geometry Of The Octonions

The Geometry Of The Octonions

Author: Tevian Dray

Publisher: World Scientific

Published: 2015-04-08

Total Pages: 229

ISBN-13: 9814401838

DOWNLOAD EBOOK

There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.


Octonions, Jordan Algebras and Exceptional Groups

Octonions, Jordan Algebras and Exceptional Groups

Author: Tonny A. Springer

Publisher: Springer

Published: 2013-12-21

Total Pages: 212

ISBN-13: 3662126222

DOWNLOAD EBOOK

The 1963 Göttingen notes of T. A. Springer are well known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra.


Quaternion and Octonion Color Image Processing with MATLAB

Quaternion and Octonion Color Image Processing with MATLAB

Author: Artyom M. Grigoryan

Publisher:

Published: 2018

Total Pages: 404

ISBN-13: 9781510611368

DOWNLOAD EBOOK

"Color image processing has involved much interest in the recent years. The use of color in image processing is motivated by the facts that 1) the human eyes can discern thousands of colors, and image processing is used both for human interaction and computer interpretation; 2) the color image comprises more information than the gray-level image; 3) the color features are robust to several image processing procedures (for example, to the translation and rotation of the regions of interest); 4) the color features are efficiently used in many vision tasks, including object recognition and tracking, image segmentation and retrieval, image registration etc.; 5) the color is necessary in many real life applications such as visual communications, multimedia systems, fashion and food industries, computer vision, entertainment, consumer electronics, production printing and proofing, digital photography, biometrics, digital artwork reproduction, industrial inspection, and biomedical applications. Finally, the enormous number of color images that constantly are uploaded into Internet require new approaches and challenges of big visual media creation, retrieval, processing, and applications. It also gives us new opportunities to create a number of big visual data-driven applications. Three independent quantities are used to describe any particular color; the human eyes are seen all colors as variable combinations of primary colors of red, green, and blue. Many methods of the modern color image processing are based on dealing out each primary color"--


Geometry of Lie Groups

Geometry of Lie Groups

Author: B. Rosenfeld

Publisher: Springer Science & Business Media

Published: 1997-02-28

Total Pages: 424

ISBN-13: 9780792343905

DOWNLOAD EBOOK

This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.


Clifford Algebras and Spinors

Clifford Algebras and Spinors

Author: Pertti Lounesto

Publisher: Cambridge University Press

Published: 2001-05-03

Total Pages: 352

ISBN-13: 0521005515

DOWNLOAD EBOOK

This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.


Strings and Geometry

Strings and Geometry

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 396

ISBN-13: 9780821837153

DOWNLOAD EBOOK

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.


Conformal Geometry of Surfaces in S4 and Quaternions

Conformal Geometry of Surfaces in S4 and Quaternions

Author: Francis E. Burstall

Publisher: Springer Science & Business Media

Published: 2002-03-05

Total Pages: 104

ISBN-13: 9783540430087

DOWNLOAD EBOOK

The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.


Visualizing Quaternions

Visualizing Quaternions

Author: Andrew J. Hanson

Publisher: Elsevier

Published: 2006-02-06

Total Pages: 530

ISBN-13: 0080474772

DOWNLOAD EBOOK

Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. - Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. - Covers both non-mathematical and mathematical approaches to quaternions.