The Existence of Multi-Dimensional Shock Fronts

The Existence of Multi-Dimensional Shock Fronts

Author: Andrew Majda

Publisher: American Mathematical Soc.

Published: 1983

Total Pages: 102

ISBN-13: 0821822810

DOWNLOAD EBOOK

The short-time existence of discontinuous shock front solutions of a system of conservation laws in several space variables is proved below under suitable hypotheses. These shock front solutions are nonlinear progressing wave solutions associated with the nonlinear wave fields. The results developed here apply to the equations of compressible fluid flow in two or three space variables with standard equations of state where the initial data can have shock discontinuities of arbitrary strength which lie on a given smooth initial surface with arbitrary geometry.


The Stability of Multi-Dimensional Shock Fronts

The Stability of Multi-Dimensional Shock Fronts

Author: Andrew Majda

Publisher: American Mathematical Soc.

Published: 1983

Total Pages: 102

ISBN-13: 0821822756

DOWNLOAD EBOOK

A systematic study of the linearized stability of multi-dimensional shock-front solutions of a system of hyperbolic conservation laws is developed.


Author:

Publisher: World Scientific

Published:

Total Pages: 1001

ISBN-13:

DOWNLOAD EBOOK


Analysis of Singularities for Partial Differential Equations

Analysis of Singularities for Partial Differential Equations

Author: Shuxing Chen

Publisher: World Scientific

Published: 2011

Total Pages: 207

ISBN-13: 9814304832

DOWNLOAD EBOOK

The book provides a comprehensive overview on the theory on analysis of singularities for partial differential equations (PDEs). It contains a summarization of the formation, development and main results on this topic. Some of the author's discoveries and original contributions are also included, such as the propagation of singularities of solutions to nonlinear equations, singularity index and formation of shocks.


Free Boundary Problems in Fluid Flow with Applications

Free Boundary Problems in Fluid Flow with Applications

Author: J M Chadam

Publisher: CRC Press

Published: 1993-02-22

Total Pages: 278

ISBN-13: 9780582215672

DOWNLOAD EBOOK

This is the third of three volumes containing the proceedings of the International Colloquium 'Free Boundary problems: Theory and Applications', held in Montreal from June 13 to June 22, 1990. The main part of this volume studies the flow of fluids, an area which has led to many of the classical free boundary problems. The first two sections contain the papers on various problems in fluid mechanics. The types of problems vary fromthe collision of two jets to the growth of a sand wave. In the next two sections porous flow is considered. This has important practical applications in fields such as petroleum engineering and groundwater pollution. Some new and interesting free boundary problems in geology and engineering are treated in the final section.


Partial Differential Equations III

Partial Differential Equations III

Author: Michael E. Taylor

Publisher: Springer Nature

Published: 2023-12-06

Total Pages: 774

ISBN-13: 3031339282

DOWNLOAD EBOOK

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L^p Sobolev spaces, Holder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis. The third edition further expands the material by incorporating new theorems and applications throughout the book, and by deepening connections and relating concepts across chapters. It includes new sections on rigid body motion, on probabilistic results related to random walks, on aspects of operator theory related to quantum mechanics, on overdetermined systems, and on the Euler equation for incompressible fluids. The appendices have also been updated with additional results, ranging from weak convergence of measures to the curvature of Kahler manifolds. Michael E. Taylor is a Professor of Mathematics at the University of North Carolina, Chapel Hill, NC. Review of first edition: “These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.” (Peter Lax, SIAM review, June 1998)


More Progresses in Analysis

More Progresses in Analysis

Author:

Publisher: World Scientific

Published: 2009-05-12

Total Pages: 1497

ISBN-13: 9812835636

DOWNLOAD EBOOK

International ISAAC (International Society for Analysis, its Applications and Computation) Congresses have been held every second year since 1997. The proceedings report on a regular basis on the progresses of the field in recent years, where the most active areas in analysis, its applications and computation are covered. Plenary lectures also highlight recent results. This volume concentrates mainly on partial differential equations, but also includes function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, stochastic analysis, inverse problems, homogenization, continuum mechanics, mathematical biology and medicine. With over 350 participants attending the congress, the book comprises 140 papers from 211 authors. The volume also serves for transferring personal information about the ISAAC and its members. This volume includes citations for O. Besov, V. Burenkov and R.P. Gilbert on the occasion of their anniversaries.


More Progresses In Analysis - Proceedings Of The 5th International Isaac Congress

More Progresses In Analysis - Proceedings Of The 5th International Isaac Congress

Author: Heinrich G W Begehr

Publisher: World Scientific

Published: 2009-05-12

Total Pages: 1497

ISBN-13: 9814469688

DOWNLOAD EBOOK

International ISAAC (International Society for Analysis, its Applications and Computation) Congresses have been held every second year since 1997. The proceedings report on a regular basis on the progresses of the field in recent years, where the most active areas in analysis, its applications and computation are covered. Plenary lectures also highlight recent results. This volume concentrates mainly on partial differential equations, but also includes function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, stochastic analysis, inverse problems, homogenization, continuum mechanics, mathematical biology and medicine. With over 350 participants attending the congress, the book comprises 140 papers from 211 authors.The volume also serves for transferring personal information about the ISAAC and its members. This volume includes citations for O Besov, V Burenkov and R P Gilbert on the occasion of their anniversaries.


Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications

Author: Thomas Y. Hou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 946

ISBN-13: 3642557112

DOWNLOAD EBOOK

The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.


Advances in the Theory of Shock Waves

Advances in the Theory of Shock Waves

Author: Heinrich Freistühler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 527

ISBN-13: 1461201934

DOWNLOAD EBOOK

In the field known as "the mathematical theory of shock waves," very exciting and unexpected developments have occurred in the last few years. Joel Smoller and Blake Temple have established classes of shock wave solutions to the Einstein Euler equations of general relativity; indeed, the mathematical and physical con sequences of these examples constitute a whole new area of research. The stability theory of "viscous" shock waves has received a new, geometric perspective due to the work of Kevin Zumbrun and collaborators, which offers a spectral approach to systems. Due to the intersection of point and essential spectrum, such an ap proach had for a long time seemed out of reach. The stability problem for "in viscid" shock waves has been given a novel, clear and concise treatment by Guy Metivier and coworkers through the use of paradifferential calculus. The L 1 semi group theory for systems of conservation laws, itself still a recent development, has been considerably condensed by the introduction of new distance functionals through Tai-Ping Liu and collaborators; these functionals compare solutions to different data by direct reference to their wave structure. The fundamental prop erties of systems with relaxation have found a systematic description through the papers of Wen-An Yong; for shock waves, this means a first general theorem on the existence of corresponding profiles. The five articles of this book reflect the above developments.