Recent studies have shown that genetic polymorphisms play an important role in structuring the seasonal life cycles of insects, complementing an earlier emphasis on the effects of environmental factors. This book presents current ideas and recent research on insect life--cycle polymorphism in a series of carefully prepared chapters by international experts, covering the full breadth of the subject in order to give an up-to-date view of how life cycles are controlled and how they evolve. By consolidating our view of insect life--cycle polymorphism in this way, the book provides a staging point for further enquiries. The volume will be of interest to a wide variety of entomologists and other biologists interested in the control and evolution of life cycles and in understanding the extraordinarily complex ecological strategies of insects and other organisms.
Insect Metamorphosis: From Natural History to Regulation of Development and Evolution explores the origin of metamorphosis, how it evolved, and how it is it regulated. The book discusses insect metamorphosis as a key innovation in insect evolution. With most of the present biodiversity on Earth composed of metamorphosing insects—approximately 1 million species currently described, with another 10-30 million still waiting to be discovered, the book delves into misconceptions and past treatments. In addition, the topic of integrating insect metamorphosis into the theory of evolution by natural selection as noted by Darwin in his On the Origin of Species is also discussed. Users will find this to be a comprehensive and updated review on insect metamorphosis, covering biological, physiological and molecular facets, with an emphasis on evolutionary aspects. - Features updated knowledge from the past decade on the mechanisms of action of juvenile hormone, the main doorkeeper of insect metamorphosis - Aids researchers in entomology or developmental biology dealing with specialized aspects of metamorphosis - Provides applied entomologists with recently updated data, especially on regulation, to better face the problems of pest control and management - Gives general evolutionary biologists context on the process of metamorphosis in its larger scope
This volume is an outgrowth of a Symposium entitled "Evolution of Escape in Space and Time" held at the XV International Congress of Entomology in Washington, D. C., USA in August, 1976. The choice of topic was prompted by recent advances in evolutionary ecology and the apparent suitability of insect migration and dia pause as appropriate material for evolutionary studies. In the event, that choice seems amply justified as I hope a perusal of these papers will show. These Sympos ium papers hardly cover the topic of the evolution of escape mechanisms exhaustively, and I am sure everyone will have his favorite lacuna. Some of the more obvious ones are indicated by Professor Southwood in his Concluding Remarks at the end of the book. The purpose of the Symposium, however, was not complete coverage, but rather to indicate the potential inherent in insect migration and diapause for the study of evolutionary problems. In that I think we have succeeded reasonably well. These papers are expanded and in some cases somewhat altered versions of the papers delivered in Washington. This has allowed greater coverage of the topics in question. I suggested a format of a general overview of a topic emphasizing the author's own research con tributions. In general the papers follow this outline although emphases vary. Two of the authors, Dr. Rainey and Dr. Lumme, were unable to attend the Symposium. Dr. Rainey's paper was read by Mr. Frank Walsh, but Dr.
Insects are the most diverse group of organisms in the 3 billion-year history of life on Earth, and the most ecologically dominant animals on land. This book chronicles for the first time the complete evolutionary history of insects: their living diversity, relationships and 400 million years of fossils. Whereas other volumes have focused on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. The book is illustrated with 955 photo- and electronmicrographs, drawings, diagrams, and field photos, many in full colour and virtually all of them original. The book will appeal to anyone engaged with insect diversity: professional entomologists and students, insect and fossil collectors, and naturalists.
No International Congress of Entomology would now be complete without a symposium on insect life-cycles. The latest Congress, held at Vancouver, BC (Canada), in July 1988, was no exception, with a symposium on the genetics, evolution, and coordination of insect life cycles organized by Bill Bradshaw and Valerie Brown. The present volume arose from papers contributed by most of the speakers at the symposium, together with papers from other invited authors. In editing the book, I have been assisted greatly by the other authors, particularly Bill Bradshaw, Val Brown and Fritz Taylor. All contributors agreed to referee two other chapters, a system that worked efficiently and effectively: I thank all authors for performing this task in the face of other demands on their time. I would also like to thank Philip Corbet, John Greenslade, Bryan Clarke, and Gillian Thompson of Springer for their help. Nottingham Francis Gilbert January 1990 Contents List of Contributors ....................................................... xiii SECTION I. Genetics of Life-Cycle Traits Introduction William E. Bradshaw ................................................. 3 1 Understanding the Evolution of Insect Life-Cycles: The Role of Genetic Analysis.
This book was developed out of a symposium at the XVII International Congress of Entomology held in Hamburg, Germany, on August 21, 1984. This symposium was organized by Drs. William Bradshaw and Hugh Dingle, who subsequently asked us to edit the proceedings. The chapters represent, for the most part, papers that were read in Hamburg but have been expanded and updated. The goal of this volume is to provide a comprehensive view of current research on insect life cycles, including field and laboratory studies, broad comparisons among species or local populations, and intensive studies of single populations, as well as theoretical research. Of necessity, given the magnitude of research now being carried out on insects, some important research programs are not included, and therein lie the makings of future volumes. This volume is divided into three parts. The first part, Geographical Patterns in Insect Life Cycles, explores various applications of a comparative method that has been valuable in investigating the potential for variability in life history parameters and the relation of these parameters to important variables in the environment.
Documents morphology, taxonomy, phylogeny, evolutionary changes, and interactions of 23 orders of insects from the Middle Jurassic and Early Cretaceous faunas in Northern China This book showcases 23 different orders of insect fossils from the Mid Mesozoic period (165 to 125 Ma) that were discovered in Northeastern China. It covers not only their taxonomy and morphology, but also their potential implications on natural sciences, such as phylogeny, function, interaction, evolution, and ecology. It covers fossil sites; paleogeology; co-existing animals and plants in well-balanced eco-systems; insects in the spotlight; morphological evolution and functional development; and interactions of insects with co-existing plants, vertebrates, and other insects. The book also includes many elegant and beautiful photographs, line drawings, and 3-D reconstructions of fossilized and extant insects. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China features chapter coverage of such insects as the: Ephemeroptera; Odonata; Blattaria; Isoptera; Orthoptera; Notoptera; Dermaptera; Chresmodidae; Phasmatodea; Plecoptera; Psocoptera; Homoptera; Heteroptera; Megaloptera; Raphidioptera; Neuroptera; Coleoptera; Hymenoptera Diptera; Mecoptera; Siphonaptera; Trichoptera and Lepidoptera. Combines academic natural science, popular science, and artistic presentation to illustrate rhythms of evolution for fossil insects from the Mid Mesozoic of Northern China Documents morphology, taxonomy, phylogeny, and evolutionary changes of 23 orders of insects from the Middle Jurassic and Early Cretaceous faunas in Northern China Presents interactions of insects with plants, vertebrates, and other insects based on well-preserved fossil evidence Uses photos of extant insects and plants, fossil and amber specimens, line drawings, and 3-D computer-generated reconstruction artworks to give readers clear and enjoyable impressions of the scientific findings Introduces insect-related stories from western and Chinese culture in text or sidebars to give global readers broader exposures Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China will appeal to entomologists, evolutionists, paleontologists, paleoecologists, and natural scientists.
Insects display a staggering diversity of mating and social behaviours. Studying these systems provides insights into a wide range of evolutionary and behavioural questions, such as the evolution of sex, sexual selection, sexual conflict, and parental care. This edited volume provides an authoritative update of the landmark book in the field, The Evolution of Insect Mating Systems (Thornhill and Alcock, 1983), which had such a huge impact in shaping adaptationist approaches to the study of animal behaviour and influencing the study of the evolution of reproductive behaviour far beyond the taxonomic remit of insects. This accessible new volume brings the empirical and conceptual scope of the original book fully up to date, incorporating the wealth of new knowledge and research of the last 30 years. It explores the evolution of complex forms of sex determination in insects, and the role of sexual selection in shaping the evolution of mating systems. Selection arising via male contest competition and female choice (both before and after copulation) are discussed, as are the roles of parasites and pathogens in mediating the strength of sexual selection, and the role that parental care plays in successful reproduction. The Evolution of Insect Mating Systems is suitable for both graduate students and researchers interested in insect mating systems or behaviour from an evolutionary, genetical, physiological, or ecological perspective. Due to its interdisciplinary and concept-driven approach, it will also be of relevance and use to a broad audience of evolutionary biologists.
This is the first single book to cover the whole of the fossil history of insects so comprehensively. The volume embraces subjects from the history of insect palaeontology to the diagnostic features of all insect orders, both extant and extinct.
Caterpillars are excellent model systems for the investigation of insect-plant interactions, predator-prey interactions, and insect physiology. Despite this, however, there is at present only a limited understanding of the constraints on foraging patterns of caterpillars. A major problem is the difficulty of designing and analyzing experiments which account for multiple constraints. Caterpillars: Ecological and Evolutionary Constraints on Foraging reviews the present state of research into caterpillar biology while arguing for a multiple factor approach in studying insect herbivores. Written by leading authorities in entomology and ecology, it provides an explicit framework for carrying out such investigations. The book details the constraints of the foraging patterns of caterpillars, including phylogenetic constraints, the physical environment, nutritional supply and demand, predators, and plant chemical defenses. It also analyzes caterpillar adaptations, such as sociality, mutualism, aposematism, and cryptic morphology, and covers population dynamics and the influence of environmental factors upon tropical, temperate, and arctic caterpillars. The book concludes with a discussion of the implications of this material for pest management, forest systems, and agroecosystems.