The equation of state of an ionized gas

The equation of state of an ionized gas

Author: Donald Paul Duclos

Publisher:

Published: 1961

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

The equation of state of an ionized gas has been investigated for electron densities below about 10(22 power) per cubic centimeter and temperatures below about 1,000,000 K. The gas is assumed to be monatomic, electrically neutral, and in thermodynamic equilibrium, but the composition of the gas is arbitrary, that is multiple ionization of any degree is allowed. The perfect gas approximation is found to be valid for electron densities at least as high as 10(16 power) per cubic centimeter, and in some cases, even higher. It is shown that approximations to the perfect gas expressions can be made which will greatly simplify calculations. It is also shown that blackbody radiation may be important at low densities. The classical corrections to the perfect gas expressions due to electrostatic forces and the finite size of particles which are obtained from the theories of Debye and Hucke, Mayer, and others, are investigated, and their limits of validity are determined. In some cases, improved expressions are derived and suitable approximations are suggested. It is noted that a fundamental weakness of the results based on the these theories is that a basic parameter, the distance of closest approach of charged particles, is not known accurately. Several approximate expressions for this distance are given. Quantum corrections for electron degeneracy and electron interactions are also given. Theories which are applicable at higher densities and temperatures than those of interest in this investigation are also discussed briefly. Finally, the equation of state of a dense, slightly ionized gas is derived.


Foundations of High-Energy-Density Physics

Foundations of High-Energy-Density Physics

Author: Jon Larsen

Publisher: Cambridge University Press

Published: 2017-03-10

Total Pages: 759

ISBN-13: 1107124115

DOWNLOAD EBOOK

A valuable and complete resource that brings together many of the branches of physics needed in high-energy-density physics. Targeted at research scientists and graduate students in physics and astrophysics, this book begins with basic concepts and develops a detailed explanation of the physics of hydrodynamics and energy transport in plasma.


An Introduction to Plasma Physics and Its Space Applications, Volume 1

An Introduction to Plasma Physics and Its Space Applications, Volume 1

Author: Luis Conde

Publisher: Morgan & Claypool Publishers

Published: 2018-12-11

Total Pages: 130

ISBN-13: 1643271741

DOWNLOAD EBOOK

The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.


Introduction to Plasma Physics and Controlled Fusion

Introduction to Plasma Physics and Controlled Fusion

Author: Francis F. Chen

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 427

ISBN-13: 1475755953

DOWNLOAD EBOOK

TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.


Fundamentals of Ionized Gases

Fundamentals of Ionized Gases

Author: Boris M. Smirnov

Publisher: John Wiley & Sons

Published: 2012-09-19

Total Pages: 488

ISBN-13: 3527637125

DOWNLOAD EBOOK

A comprehensive and readily accessible work for studying the physics of ionized gases, based on "Physics of Ionized Gases". The focus remains on fundamentals rather than on the details required for interesting but difficult applications, such as magnetic confinement fusion, or the phenomena that occur with extremely high-intensity short-pulse lasers. However, this new work benefits from much rearranging of the subject matter within each topic, resulting in a more coherent structure. There are also some significant additions, many of which relate to clusters, while other enlarged sections include plasmas in the atmosphere and their applications. In each case, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas can then be treated with comprehensive clarity. The work is rounded off with appendices containing information and data of great importance and relevance that are not easily found in other books. Valuable reading for graduate and PhD physics students, and a reference for researchers in low-temperature ionized gases-plasma processing, edge region fusion plasma physics, and atmospheric plasmas.


Plasma Dynamics for Aerospace Engineering

Plasma Dynamics for Aerospace Engineering

Author: Joseph J. S. Shang

Publisher: Cambridge University Press

Published: 2018-06-21

Total Pages: 403

ISBN-13: 110841897X

DOWNLOAD EBOOK

Provides a comprehensive review and usable problem-solving techniques for aerospace engineering plasma applications.


Plasma Chemistry

Plasma Chemistry

Author: Alexander Fridman

Publisher: Cambridge University Press

Published: 2008-05-05

Total Pages:

ISBN-13: 1139471732

DOWNLOAD EBOOK

Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.


High Temperature Plasmas

High Temperature Plasmas

Author: Karl-Heinz Spatschek

Publisher: John Wiley & Sons

Published: 2012-02-02

Total Pages: 578

ISBN-13: 3527638121

DOWNLOAD EBOOK

Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena. For master and PhD students as well as researchers interested in the theoretical foundations of plasma models.


Magnetogasdynamics and Plasma Dynamics

Magnetogasdynamics and Plasma Dynamics

Author: Shih-I. Pai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 207

ISBN-13: 370918083X

DOWNLOAD EBOOK

This book is based on the lecture notes which the author gave in a seminar of the same title in the Institut fur theoretische Gasdynamik, D. V. L. e. V., Aachen, Germany, during the academic year of 1957-1958. The subject matter has been rewritten and expanded after the author's return to the University of Maryland. The purpose of this book is to give a theoretical introduction to plasma dynamics and magnetogasdynamics from the gasdynamic point of view. Attention is given to the basic assumptions and the formulation of the theory of the flow problems of a plasma, an ionized gas, as well as to the various methods of solving these problems. Since plasma dynamics is still in a developing stage, the author hopes that this book _may furnish the readers some basic elements in the theory of plasma -dynamics so that they may find it useful for further study and research in this new field. After the introduction in which the scope of plasma. dynamics is briefly discussed, the fundamental equations of plasma dynamics from the macro scopic point of view, i. e., the theory of continuum has been analyzed, in detail in chapters IT to IV, including many simplified cases sUQh as m,agneto gasdynamics, magnetohydrodynamics, electromaguetodynamics, radiation magnetogasdynamics etc. In chapter V, the important parameters and their range of applicatIons have been treated. The parameters are useful in the correlation of experi mental results.