The Elucidation of Organic Electrode Processes

The Elucidation of Organic Electrode Processes

Author: P. Zuman

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 420

ISBN-13: 1483261662

DOWNLOAD EBOOK

The Cell Cycle: Gene-Enzyme Interactions focuses on the interaction of the genetic and enzymatic complements of a cell, as well as the control of genetic expression in bacterial cells. The selection first offers information on cell evolution and the thermodynamics and regulation of chromosome replication and cell division in Escherichia coli. Discussions focus on genome evolution, selection and thermodynamics, coordination between chromosome replication and cell division, and cellular response to nutritional alterations. The text then elaborates on temporal control of gene expression in bacteria, including rate of induced enzyme synthesis in synchronous populations; change in rate of induced enzyme synthesis and sequential gene replication; metabolic oscillations and the temporal control of enzyme synthesis; and DNA replication and the integration of cell growth and division. The publication examines synchrony and the formation and germination of bacterial spores and synthesis of macromolecules during the cell cycle in yeast. Topics include gene position and enzyme timing, synthesis of ribosomal and transfer RNA during the cell cycle, and analysis of synchrony during sporulation. The selection is highly recommended for readers wanting to study cell cycle.


Topics In Organic Polarography

Topics In Organic Polarography

Author: P. Zuman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 533

ISBN-13: 1468418122

DOWNLOAD EBOOK

Even though the nwnber of requests for reprints and the number of quotations in the Science Citation Index has indicated an ever-increasing interest in topics of organic polarography, I have often felt that the reason that some work is less known may well be because the papers were published in less accessible journals. Therefore, I was pleased when I was asked to prepare a selection of my papers on organic polarography for reprinting. This collection of papers may indicate some of the possibilities offered by polarography in the study of properties of organic compounds. The fact that the papers are published in one volume, not only makes the information more easily accessible for the reader, but also enables a direct comparison of related topics. The mode of selection is discussed in the Introduction. The papers reprinted in this volume are mostly based on work carried out in the J. Heyrovsky Institute of Polarography of the Czechoslovak Academy of Sciences in Prague, in cooperation with my co-workers. I would like to take this opportunity of thanking all of them for the pleasure I got from this cooperation on the solution of varying problems of organic electrochemistry .


Handbook of Electrochemistry

Handbook of Electrochemistry

Author: Cynthia G. Zoski

Publisher: Elsevier

Published: 2007-02-07

Total Pages: 935

ISBN-13: 0444519580

DOWNLOAD EBOOK

Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)


Progress in Physical Organic Chemistry

Progress in Physical Organic Chemistry

Author: Andrew Streitwieser

Publisher: John Wiley & Sons

Published: 2009-09-17

Total Pages: 358

ISBN-13: 0470172045

DOWNLOAD EBOOK

Progress in Physical Organic Chemistry is dedicated to reviewing the latest investigations into organic chemistry that use quantitative and mathematical methods. These reviews help readers understand the importance of individual discoveries and what they mean to the field as a whole. Moreover, the authors, leading experts in their fields, offer unique and thought-provoking perspectives on the current state of the science and its future directions. With so many new findings published in a broad range of journals, Progress in Physical Organic Chemistry fills the need for a central resource that presents, analyzes, and contextualizes the major advances in the field. The articles published in Progress in Physical Organic Chemistry are not only of interest to scientists working in physical organic chemistry, but also scientists working in the many subdisciplines of chemistry in which physical organic chemistry approaches are now applied, such as biochemistry, pharmaceutical chemistry, and materials and polymer science. Among the topics explored in this series are reaction mechanisms; reactive intermediates; combinatorial strategies; novel structures; spectroscopy; chemistry at interfaces; stereochemistry; conformational analysis; quantum chemical studies; structure-reactivity relationships; solvent, isotope and solid-state effects; long-lived charged, sextet or open-shell species; magnetic, non-linear optical and conducting molecules; and molecular recognition.