Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
This book addresses the problem of teaching the Electronic Structure and Chemical Bonding of atoms and molecules to high school and university students. It presents the outcomes of thorough investigations of some teaching methods as well as an unconventional didactical approach which were developed during a seminar for further training organized by the University of Bordeaux I for teachers of the physical sciences.The text is the result of a collective effort by eleven scientists and teachers: physicists and chemists doing research at the university or at the CRNS, university professors, and science teachers at high-school or university level.While remaining wide open to the latest discoveries of science, the text also offers a large number of problems along with their solutions and is illustrated by several pedagogic suggestions. It is intended for the use of teachers and students of physics, chemistry, and of the physical sciences in general.
The present volume is a collection of review articles highlighting the fundamental advances made in this area by the internationally acclaimed research groups , most of them being pioneers themselves and coming together for the first time.
Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics
Modern Electronic Structure Theory provides a didactically oriented description of the latest computational techniques in electronic structure theory and their impact in several areas of chemistry. The book is aimed at first year graduate students or college seniors considering graduate study in computational chemistry, or researchers who wish to acquire a wider knowledge of this field.
For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.
This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. “In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work.” G. Petzow in International Journal of Materials Research. “The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick ‘cook book’ type text, but as a serious, critical treatise for some significant time to come.” G.S. Upadhyaya in Science of Sintering. “The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, ‘Intermezzos’, ‘Epilogues’ and asides within the text from the author’s experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science.” M. Davies in Materials World.