Introduction to the Theory of Magnetism

Introduction to the Theory of Magnetism

Author: D. Wagner

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 295

ISBN-13: 1483156680

DOWNLOAD EBOOK

Introduction to the Theory of Magnetism is an introductory text on the theory of magnetism. The discussions are organized around diamagnetism, paramagnetism, and ferromagnetism. The exchange interaction and the resulting many-particle problem for a system of atomic spins are also considered, and the properties of this system are examined in several approximations. This book is comprised of three chapters and begins with a review of the fundamental effects of diamagnetism, paying particular attention to the Bohr-van Leeuwen theorem, the Fermi gas, Landau levels, and cyclotron resonance. The diamagnetism of atoms and ions and of electrons is also described, and the magnetic moment of a free electron gas produced by the intrinsic magnetic moment of the electrons is calculated. The next chapter is devoted to the classical theory of paramagnetism and covers the paramagnetism of free electrons, free atoms (rare earths), and atoms in a crystal. Paramagnetic resonance and the Zeeman effect of free atoms are highlighted. The third and last chapter focuses on ferromagnetism and ferromagnetic resonance, together with the molecular-field approximation, spin waves, high temperatures, and the band model. This monograph will be a valuable resource for students of physics.


THEORY OF MAGNETISM.

THEORY OF MAGNETISM.

Author: Kei Yosida

Publisher: Springer Science & Business Media

Published: 1996

Total Pages: 344

ISBN-13: 9783540606512

DOWNLOAD EBOOK

Translated from the Japanese, this title is the first modern book on magnetics, a topic of increasing importance. The book provides the foundation for further development in this field, covering magnetic ions in crystals, and magnetism of spin systems, metals and dilute alloys.


Theory of Itinerant Electron Magnetism

Theory of Itinerant Electron Magnetism

Author: Jürgen Kübler

Publisher: Oxford University Press

Published: 2017-03-23

Total Pages: 494

ISBN-13: 0191565423

DOWNLOAD EBOOK

This book, in the broadest sense, is an application of quantum mechanics and statistical mechanics to the field of magnetism. Under certain well described circumstances, an immensely large number of electrons moving in the solid state of matter will collectively produce permanent magnetism. Permanent magnets are of fundamental interest, and magnetic materials are also of great practical importance as they provide a large field of technological applications. The physical details describing the many electron problem of magnetism are presented in this book on the basis of the local density functional approximation. The emphasis is on realistic magnets, for which the equations describing the many electron problem can only be solved by using computers. The great, recent and continuing improvements of computers are, to a large extent, responsible for the progress in the field. Along with a detailed introduction to the density functional theory, this book presents representative computational methods and provides the reader with a complete computer programme for the determination of the electronic structure of a magnet on a PC. A large part of the book is devoted to a detailed treatment of the connections between electronic properties and magnetism, and how they differ in the various known magnetic systems. Current trends are exposed and explained for a large class of alloys and compounds. The modern field of artificially layered systems - known as multilayers - and their industrial applications are dealt with in detail. Finally, an attempt is made to relate the rich thermodynamic properties of magnets to the ab initio results originating from the electronic structure.


Theory Of Magnetism: Application To Surface Physics

Theory Of Magnetism: Application To Surface Physics

Author: Hung-the Diep

Publisher: World Scientific Publishing Company

Published: 2013-12-24

Total Pages: 438

ISBN-13: 9814569968

DOWNLOAD EBOOK

The book is intended for graduate students and researchers who wish to master the main properties of magnetic materials in the bulk state and at the nanometric scale such as for thin films and multilayers. This textbook provides the theories and methods of simulation to study and to understand these properties in an explicit manner.In the first part of the book, the quantum theory of magnetism is presented while the second part of the book is devoted to the application of the theory of magnetism to surface physics. Numerous examples covering typical cases in ferromagnets, antiferromagnets, ferrimagnets, helimagnets, and frustrated spin systems are all illustrated. Fundamental surface effects are shown and discussed. Lastly, the spin transport is described — in which the basic formulation of the Boltzmann's equation is recalled — and the recent methods of Monte Carlo simulation to deal with the spin resistivity are explained.This book contains a large number of detailed solutions for the problems given in each chapter to help readers discover new related phenomena and applications, as well as an appendix on elements of statistical physics included at the end to make the book self-contained.


Introduction to the Electron Theory of Metals

Introduction to the Electron Theory of Metals

Author: Uichiro Mizutani

Publisher: Cambridge University Press

Published: 2001-06-14

Total Pages: 610

ISBN-13: 9780521587099

DOWNLOAD EBOOK

Electron theory of metals textbook for advanced undergraduate students of condensed-matter physics and related disciplines.


Interacting Electrons and Quantum Magnetism

Interacting Electrons and Quantum Magnetism

Author: Assa Auerbach

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 249

ISBN-13: 1461208696

DOWNLOAD EBOOK

In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.


Statistical Mechanics Made Simple (2nd Edition)

Statistical Mechanics Made Simple (2nd Edition)

Author: Daniel C Mattis

Publisher: World Scientific Publishing Company

Published: 2008-03-04

Total Pages: 358

ISBN-13: 9814365386

DOWNLOAD EBOOK

This second edition extends and improves on the first, already an acclaimed and original treatment of statistical concepts insofar as they impact theoretical physics and form the basis of modern thermodynamics. This book illustrates through myriad examples the principles and logic used in extending the simple laws of idealized Newtonian physics and quantum physics into the real world of noise and thermal fluctuations.In response to the many helpful comments by users of the first edition, important features have been added in this second, new and revised edition. These additions allow a more coherent picture of thermal physics to emerge. Benefiting from the expertise of the new co-author, the present edition includes a detailed exposition — occupying two separate chapters — of the renormalization group and Monte-Carlo numerical techniques, and of their applications to the study of phase transitions. Additional figures have been included throughout, as have new problems. A new Appendix presents fully worked-out solutions to representative problems; these illustrate various methodologies that are peculiar to physics at finite temperatures, that is, to statistical physics.This new edition incorporates important aspects of many-body theory and of phase transitions. It should better serve the contemporary student, while offering to the instructor a wider selection of topics from which to craft lectures on topics ranging from thermodynamics and random matrices to thermodynamic Green functions and critical exponents, from the propagation of sound in solids and fluids to the nature of quasiparticles in quantum liquids and in transfer matrices.