The Earth's Electric Field

The Earth's Electric Field

Author: Michael C. Kelley

Publisher: Newnes

Published: 2013-09-21

Total Pages: 230

ISBN-13: 0123978831

DOWNLOAD EBOOK

The Earth's Electric Field provides you with an integrated and comprehensive picture of the generation of the terrestrial electric fields, their dynamics and how they couple/propagate through the medium. The Earth's Electric Field provides basic principles of terrestrial electric field related topics, but also a critical summary of electric field related observations and their significance to the various related phenomena in the atmosphere. For the first time, Kelley brings together information on this topic in a coherent way, making it easy to gain a broad overview of the critical processes in an efficient way. If you conduct research in atmospheric science, physics, atmospheric chemistry, space plasma physics, and solar terrestrial physics, you will find this book to be essential reading. - The only book on the physics of terrestrial electric fields and their generation mechanisms, propagation and dynamics–making it essential reading for scientists conducting research in upper atmospheric, ionospheric, magnetospheric and space weather - Covers the processes related to electric field generation and electric field coupling in the upper atmosphere along with providing new insights about electric fields generated by sources from sun to mud - Focuses on real-world implications—covering topics such as space weather, earthquakes, the effect on power grids, and the effect on GPS and communication devices


The Earth's Electrical Environment

The Earth's Electrical Environment

Author: National Research Council

Publisher: National Academies Press

Published: 1986-02-01

Total Pages: 279

ISBN-13: 0309036801

DOWNLOAD EBOOK

This latest addition to the Studies in Geophysics series explores in scientific detail the phenomenon of lightning, cloud, and thunderstorm electricity, and global and regional electrical processes. Consisting of 16 papers by outstanding experts in a number of fields, this volume compiles and reviews many recent advances in such research areas as meteorology, chemistry, electrical engineering, and physics and projects how new knowledge could be applied to benefit mankind.


The Earth and Atmospheric Electricity

The Earth and Atmospheric Electricity

Author: Vladimir Shuleikin

Publisher:

Published: 2018

Total Pages: 0

ISBN-13: 9781536139730

DOWNLOAD EBOOK

According to the provisions of the surface atmospheric electricity theory, the space charge of the surface air layer owes its origin to ionization by exhaling soil radon. According to field observations, a model representation of relations between hydrogen, methane, radon, and surface atmospheric electricity elements is composed. Bubbles of two volatile gases carry soil radon from a depth of 4-6 m to the near-surface atmosphere. As a consequence, light ions produced by ionization determine polar conductivity of the surface air; light ion aggregation with neutral condensation nuclei produces heavy ions primarily responsible for the atmospheric electric field. This means that the surface atmospheric electricity is determined by local geology and geodynamics.According to the field observations, the radon content in the surface soil layers is at least two orders of magnitude higher than the concentration of ionizer exhalation. A change in the soil radon content of a single percent will lead to a twofold change in the exhalation concentration, i.e., to a twofold change in the polar conductivities and the atmospheric electric field. This means that the surface atmospheric electricity elements will be extremely sensitive to variations in the subvertical carrier gas (hydrogen and methane) flow density.The results of multiple field observations prove the correctness of the above assumptions. The increased soil-atmosphere air exchange above fault zones, the basement top settling area, and the zones of natural or human-made soil loosening leads to an abrupt decrease in the atmospheric electric field and an increase in the polar air conductivity. An increase in the sub-vertical flow density of hydrogen above the ore body cap or methane in the oil field plume inevitably leads to low values of the atmospheric electric field within the deposit boundaries. The effect can be increased by the presence of natural or human-made seismic excitation in geological environments.The industrial level withdrawal of artesian waters is accompanied by a multiple increase in the atmospheric electric field above the area of hydrogeological processes; methane injection into the underground gas storage, industrial disposal of industrial wastewater leads to the opposite effect, i.e., a decrease of the atmospheric electric field. Taking into account the model constructed, complex measurements of surface atmospheric electricity elements--hydrogen and radon--allow for an indirect expression estimate of the soil methane content above the level of (10-6 - 10-5) vol.% and monitoring of the landslide stressed state.


University Physics

University Physics

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves


The Earth's Ionosphere

The Earth's Ionosphere

Author: Michael Kelly

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 500

ISBN-13: 0323148050

DOWNLOAD EBOOK

The Earth's Ionosphere: Plasma Physics and Electrodynamics emphasizes the study of plasma physics and electrodynamics of the ionosphere, including many aeronomical influences. The ionosphere is somewhat of a battleground between the earth's neutral atmosphere and the sun's fully ionized atmosphere, in which the earth is embedded. One of the challenges of ionosphere research is to know enough about these two vast fields of research to make sense out of ionospheric phenomena. This book provides insights into how these competing sources of mass, momentum, and energy compete for control of the ionosphere. Some of the topics discussed include the fundamentals of ionospheric plasma dynamics; equatorial plasma instabilities; high-latitude electrodynamics; and instabilities and structure in the high-latitude ionosphere. Throughout this text only the region above 90 km are discussed, ignoring the D region entirely. This publication is a good source of information for students and individuals conducting research on earth's ionosphere.


Earthing

Earthing

Author: Clinton Ober

Publisher: Basic Health Publications, Inc.

Published: 2010

Total Pages: 276

ISBN-13: 9781591202837

DOWNLOAD EBOOK

The solution for chronic inflammation, regarded as the cause of the most common modern diseases, has been identified! Earthing introduces the planet's powerful, amazing, and overlooked natural healing energy and how people anywhere can readily connect to it. This never-before-told story, filled with fascinating research and real-life testimonials, chronicles a discovery with the potential to create a global health revolution.


Space Physics and Aeronomy, Ionosphere Dynamics and Applications

Space Physics and Aeronomy, Ionosphere Dynamics and Applications

Author: Chao Huang

Publisher: John Wiley & Sons

Published: 2021-05-11

Total Pages: 47

ISBN-13: 1119507553

DOWNLOAD EBOOK

A comprehensive review of global ionospheric research from the polar caps to equatorial regions It's more than a century since scientists first identified the ionosphere, the layer of the Earth’s upper atmosphere that is ionized by solar and cosmic radiation. Our understanding of this dynamic part of the near-Earth space environment has greatly advanced in recent years thanks to new observational technologies, improved numerical models, and powerful computing capabilities. Ionosphere Dynamics and Applications provides a comprehensive overview of historic developments, recent advances, and future directions in ionospheric research. Volume highlights include: Behavior of the ionosphere in different regions from the poles to the equator Distinct characteristics of the high-, mid-, and low-latitude ionosphere Observational results from ground- and space-based instruments Ionospheric impacts on radio signals and satellite operations How earthquakes and tsunamis on Earth cause disturbances in the ionosphere The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief


Ionospheric Multi-Spacecraft Analysis Tools

Ionospheric Multi-Spacecraft Analysis Tools

Author: Malcolm Wray Dunlop

Publisher: Springer Nature

Published: 2019-10-29

Total Pages: 296

ISBN-13: 3030267326

DOWNLOAD EBOOK

This open access book provides a comprehensive toolbox of analysis techniques for ionospheric multi-satellite missions. The immediate need for this volume was motivated by the ongoing ESA Swarm satellite mission, but the tools that are described are general and can be used for any future ionospheric multi-satellite mission with comparable instrumentation. In addition to researching the immediate plasma environment and its coupling to other regions, such a mission aims to study the Earth’s main magnetic field and its anomalies caused by core, mantle, or crustal sources. The parameters for carrying out this kind of work are examined in these chapters. Besides currents, electric fields, and plasma convection, these parameters include ionospheric conductance, Joule heating, neutral gas densities, and neutral winds.


Space Weather Monitoring by Ground-Based Means

Space Weather Monitoring by Ground-Based Means

Author: Oleg Troshichev

Publisher: Springer Science & Business Media

Published: 2012-02-10

Total Pages: 305

ISBN-13: 3642168035

DOWNLOAD EBOOK

This book demonstrates that the method, based on the ground polar cap magnetic observations is a reliable diagnosis of the solar wind energy coming into the magnetosphere Method for the uninterruptive monitoring of the magnetosphere state (i.e. space weather). It shows that the solar wind energy pumping power, can be described by the PC growth rate, thus, the magnetospheric substorms features are predetermined by the PC dynamics. Furthermore, it goes on to show that the beginning and ending of magnetic storms is predictable. The magnetic storm start only if the solar energy input into the magnetosphere exceeds a certain level and stops when the energy input turns out to be below this level.