Particle Detectors

Particle Detectors

Author: Hermann Kolanoski

Publisher: Oxford University Press

Published: 2020-06-30

Total Pages: 949

ISBN-13: 0191899232

DOWNLOAD EBOOK

This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.


Phenomenology Of Ultra-relativistic Heavy-ion Collisions

Phenomenology Of Ultra-relativistic Heavy-ion Collisions

Author: Wojciech Florkowski

Publisher: World Scientific Publishing Company

Published: 2010-03-24

Total Pages: 437

ISBN-13: 9813107596

DOWNLOAD EBOOK

This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.