The Descriptive Set Theory of Polish Group Actions

The Descriptive Set Theory of Polish Group Actions

Author: Howard Becker

Publisher: Cambridge University Press

Published: 1996-12-05

Total Pages: 152

ISBN-13: 0521576059

DOWNLOAD EBOOK

In this book the authors present their research into the foundations of the theory of Polish groups and the associated orbit equivalence relations. The particular case of locally compact groups has long been studied in many areas of mathematics. Non-locally compact Polish groups occur naturally as groups of symmetries in such areas as logic (especially model theory), ergodic theory, group representations, and operator algebras. Some of the topics covered here are: topological realizations of Borel measurable actions; universal actions; applications to invariant measures; actions of the infinite symmetric group in connection with model theory (logic actions); dichotomies for orbit spaces (including Silver, Glimm-Effros type dichotomies and the topological Vaught conjecture); descriptive complexity of orbit equivalence relations; definable cardinality of orbit spaces.


Invariant Descriptive Set Theory

Invariant Descriptive Set Theory

Author: Su Gao

Publisher: CRC Press

Published: 2008-09-03

Total Pages: 392

ISBN-13: 9781584887942

DOWNLOAD EBOOK

Presents Results from a Very Active Area of ResearchExploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathem


Classical Descriptive Set Theory

Classical Descriptive Set Theory

Author: Alexander Kechris

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 419

ISBN-13: 1461241901

DOWNLOAD EBOOK

Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.


Global Aspects of Ergodic Group Actions

Global Aspects of Ergodic Group Actions

Author: A. S. Kechris

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 258

ISBN-13: 0821848941

DOWNLOAD EBOOK

A study of ergodic, measure preserving actions of countable discrete groups on standard probability spaces. It explores a direction that emphasizes a global point of view, concentrating on the structure of the space of measure preserving actions of a given group and its associated cocycle spaces.


Geometric Set Theory

Geometric Set Theory

Author: Paul B. Larson

Publisher: American Mathematical Soc.

Published: 2020-07-16

Total Pages: 345

ISBN-13: 1470454629

DOWNLOAD EBOOK

This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.


A Course on Borel Sets

A Course on Borel Sets

Author: S.M. Srivastava

Publisher: Springer

Published: 2013-12-01

Total Pages: 271

ISBN-13: 3642854737

DOWNLOAD EBOOK

The roots of Borel sets go back to the work of Baire [8]. He was trying to come to grips with the abstract notion of a function introduced by Dirich let and Riemann. According to them, a function was to be an arbitrary correspondence between objects without giving any method or procedure by which the correspondence could be established. Since all the specific functions that one studied were determined by simple analytic expressions, Baire delineated those functions that can be constructed starting from con tinuous functions and iterating the operation 0/ pointwise limit on a se quence 0/ functions. These functions are now known as Baire functions. Lebesgue [65] and Borel [19] continued this work. In [19], Borel sets were defined for the first time. In his paper, Lebesgue made a systematic study of Baire functions and introduced many tools and techniques that are used even today. Among other results, he showed that Borel functions coincide with Baire functions. The study of Borel sets got an impetus from an error in Lebesgue's paper, which was spotted by Souslin. Lebesgue was trying to prove the following: Suppose / : )R2 -- R is a Baire function such that for every x, the equation /(x,y) = 0 has a. unique solution. Then y as a function 0/ x defined by the above equation is Baire.


Generalized Descriptive Set Theory and Classification Theory

Generalized Descriptive Set Theory and Classification Theory

Author: Sy-David Friedman

Publisher: American Mathematical Soc.

Published: 2014-06-05

Total Pages: 92

ISBN-13: 0821894757

DOWNLOAD EBOOK

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.


Surveys in Set Theory

Surveys in Set Theory

Author: A. R. D. Mathias

Publisher: Cambridge University Press

Published: 1983-10-13

Total Pages: 257

ISBN-13: 0521277337

DOWNLOAD EBOOK

This book comprises five expository articles and two research papers on topics of current interest in set theory and the foundations of mathematics. Articles by Baumgartner and Devlin introduce the reader to proper forcing. This is a development by Saharon Shelah of Cohen's method which has led to solutions of problems that resisted attack by forcing methods as originally developed in the 1960s. The article by Guaspari is an introduction to descriptive set theory, a subject that has developed dramatically in the last few years. Articles by Kanamori and Stanley discuss one of the most difficult concepts in contemporary set theory, that of the morass, first created by Ronald Jensen in 1971 to solve the gap-two conjecture in model theory, assuming Gödel's axiom of constructibility. The papers by Prikry and Shelah complete the volume by giving the reader the flavour of contemporary research in set theory. This book will be of interest to graduate students and research workers in set theory and mathematical logic.


Descriptive Set Theory and Dynamical Systems

Descriptive Set Theory and Dynamical Systems

Author: M. Foreman

Publisher: Cambridge University Press

Published: 2000-05-25

Total Pages: 304

ISBN-13: 9780521786447

DOWNLOAD EBOOK

In recent years there has been a growing interest in the interactions between descriptive set theory and various aspects of the theory of dynamical systems, including ergodic theory and topological dynamics. This volume, first published in 2000, contains a collection of survey papers by leading researchers covering a wide variety of recent developments in these subjects and their interconnections. This book provides researchers and graduate students interested in either of these areas with a guide to work done in the other, as well as with an introduction to problems and research directions arising from their interconnections.


Logic Colloquium '99

Logic Colloquium '99

Author: Jan Van Eijck

Publisher: Cambridge University Press

Published: 2017-03-30

Total Pages: 218

ISBN-13: 1108583482

DOWNLOAD EBOOK

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the seventeenth publication in the Lecture Notes in Logic series, collects the proceedings of the European Summer Meeting of the Association for Symbolic Logic, held in Utrecht, The Netherlands in August, 1999. It includes surveys and research articles from some of the world's preeminent logicians. Two long articles are based on tutorials given at the meeting and present accessible expositions of current research in geometric model theory and the descriptive set theory of group actions. The other articles cover current research topics in all areas of mathematical logic, including proof theory, set theory, model theory, computability theory and philosophy.