The Painlevé Property

The Painlevé Property

Author: Robert Conte

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 828

ISBN-13: 1461215323

DOWNLOAD EBOOK

The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an in-depth study of singularities, that were first used by Poincar and subsequently developed by Painlev in his famous Leons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlev dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.


Nonlinear Evolution Equations and Painlev‚ Test

Nonlinear Evolution Equations and Painlev‚ Test

Author: W.-H. Steeb

Publisher: World Scientific

Published: 1988

Total Pages: 345

ISBN-13: 9971507447

DOWNLOAD EBOOK

This book is an edited version of lectures given by the authors at a seminar at the Rand Afrikaans University. It gives a survey on the Painlev‚ test, Painlev‚ property and integrability. Both ordinary differential equations and partial differential equations are considered.


Nonlinear Evolutionary Partial Differential Equations

Nonlinear Evolutionary Partial Differential Equations

Author: Xiaxi Ding

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 653

ISBN-13: 0821806610

DOWNLOAD EBOOK

This volume contains the proceedings from the International Conference on Nonlinear Evolutionary Partial Differential Equations held in Beijing in June 1993. The topic for the conference was selected because of its importance in the natural sciences and for its mathematical significance. Discussion topics include conservation laws, dispersion waves, Einstein's theory of gravitation, reaction-diffusion equations, the Navier-Stokes equations, and more. New results were presented and are featured in this volume. Titles in this series are co-published with International Press, Cambridge, MA.


Classical Methods in Ordinary Differential Equations

Classical Methods in Ordinary Differential Equations

Author: Stuart P. Hastings

Publisher: American Mathematical Soc.

Published: 2011-12-15

Total Pages: 393

ISBN-13: 0821846949

DOWNLOAD EBOOK

This text emphasizes rigorous mathematical techniques for the analysis of boundary value problems for ODEs arising in applications. The emphasis is on proving existence of solutions, but there is also a substantial chapter on uniqueness and multiplicity questions and several chapters which deal with the asymptotic behavior of solutions with respect to either the independent variable or some parameter. These equations may give special solutions of important PDEs, such as steady state or traveling wave solutions. Often two, or even three, approaches to the same problem are described. The advantages and disadvantages of different methods are discussed. The book gives complete classical proofs, while also emphasizing the importance of modern methods, especially when extensions to infinite dimensional settings are needed. There are some new results as well as new and improved proofs of known theorems. The final chapter presents three unsolved problems which have received much attention over the years. Both graduate students and more experienced researchers will be interested in the power of classical methods for problems which have also been studied with more abstract techniques. The presentation should be more accessible to mathematically inclined researchers from other areas of science and engineering than most graduate texts in mathematics.


Solitons and the Inverse Scattering Transform

Solitons and the Inverse Scattering Transform

Author: Mark J. Ablowitz

Publisher: SIAM

Published: 2006-05-15

Total Pages: 433

ISBN-13: 089871477X

DOWNLOAD EBOOK

A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localised pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation.