Oliver Pooth describes the silicon strip tracker of the CMS detector and discusses methods of quality control that are new to the field of particle detector physics. These methods were established to guarantee a uniform behaviour of all detector modules which were built and tested in various places worldwide.
Oliver Pooth describes the silicon strip tracker of the CMS detector and discusses methods of quality control that are new to the field of particle detector physics. These methods were established to guarantee a uniform behaviour of all detector modules which were built and tested in various places worldwide.
In the post era of the Z and W discovery, after the observation of Jets at UA1 and UA2 at CERN, John Ellis visioned at a HEP conference at Lake Tahoe, California in 1983 “To proceed with high energy particle physics, one has to tag the avour of the quarks!” This statement re ects the need for a highly precise tracking device, being able to resolve secondary and tertiary vertices within high-particle densities. Since the d- tance between the primary interaction point and the secondary vertex is proportional tothelifetimeoftheparticipatingparticle,itisanexcellentquantitytoidentifypar- cle avour in a very fast and precise way. In colliding beam experiments this method was applied especially to tag the presence of b quarks within particle jets. It was rst introduced in the DELPHI experiment at LEP but soon followed by all collider - periments to date. The long expected t quark discovery was possible mainly with the help of the CDF silicon vertex tracker, providing the b quark information. In the beginning of the 21st century the new LHC experiments are beginning to take 2 shape. CMS with its 206m of silicon area is perfectly suited to cope with the high luminosity environment. Even larger detectors are envisioned for the far future, like the SiLC project for the International Linear Collider. Silicon sensors matured from small 1in. single-sided devices to large 6in. double-sided, double metal detectors and to 6in. single-sided radiation hard sensors.
Ch. 1. Introduction : how physics defines the LHC environment and detectors / D. Green -- ch. 2. The CMS pixel detector / W. Erdmann -- ch. 3. The hybrid tracking system of ATLAS / Leonardo Rossi -- ch. 4. The all-silicon strip CMS tracker : microtechnology at the macroscale / M. Mannelli -- ch. 5. The ATLAS electromagnetic calorimeters : features and performance / Luciano Mandelli -- ch. 6. The CMS electromagnetic calorimeter : crystals and APD productions / P. Bloch -- ch. 7. ATLAS electronics : an overview / Philippe Farthouat -- ch. 8. Innovations in the CMS tracker electronics / G. Hall -- ch. 9. TileCal : the hadronic section of the central ATLAS calorimeter / K. Anderson [und weitere] -- ch. 10. Innovations for the CMS HCAL / J. Freeman -- ch. 11. ATLAS superconducting toroids - the largest ever built / Herman H.J. ten Kate -- ch. 12. Constructing a 4-Tesla large thin solenoid at the limit of what can be safely operated / A. Hervé -- ch. 13. The ATLAS muon spectrometer / Giora Mikenberg -- ch. 14. The CMS muon detector : from the first thoughts to the final design / Fabrizio Gasparini -- ch. 15. The why and how of the ATLAS data acquisition system / Livio Mapelli and Giuseppe Mornacchi -- ch. 16. Removing the haystack - the CMS trigger and data acquisition systems / Vivian O'Dell
Discussing the many facets of highly integrated semiconductor detector systems, this comprehensive text provides an application-oriented introduction to sensors and electronics.
This book features up-to-date technology applications to radiation detection. It synthesises several techniques of and approaches to radiation detection, covering a wide range of applications and addressing a large audience of experts and students.Many of the talks are in fact reviews of particular topics often not covered in standard books and other conferences, for instance, the medical physics section. To present these medical physics talks is crucial, since a large fraction of the community in medical physics are from the particle physics community. The same feature is true for astroparticle and space physics, which are relatively new fields.This book is unique in its scope. Except for IEEE, there is no other conference in the world that presents such a wide coverage of advanced technology applied to particle physics. However, unlike IEEE, more room is made in the book for reviews and general talks.
This book features up-to-date technology applications to radiation detection. It synthesises several techniques of and approaches to radiation detection, covering a wide range of applications and addressing a large audience of experts and students. Many of the talks are in fact reviews of particular topics often not covered in standard books and other conferences, for instance, the medical physics section. To present these medical physics talks is crucial, since a large fraction of the community in medical physics are from the particle physics community. The same feature is true for astroparticle and space physics, which are relatively new fields. This book is unique in its scope. Except for IEEE, there is no other conference in the world that presents such a wide coverage of advanced technology applied to particle physics. However, unlike IEEE, more room is made in the book for reviews and general talks.
On September 27 – October 3, 2008 the NATO Advanced Research Workshop (ARW) on progress in high-energy physics and nuclear safety was held in Yalta, Crimea (see: http://crimea.bitp.kiev.ua and http://arw.bitp.kiev.ua). Nearly 50 leading experts in high-energy and nuclear physics from Eastern and Western Europe as well as from North America participated at the Workshop. The topics of the ARW covered recent results of theoretical and experimental studies in high-energy physics, accelerator, detection and nuclear technologies, as well as problems of nuclear safety in high-energy experimentation and in nuclear - dustry. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments were among the topics of the ARW. An important aspect of the Workshop was the scienti?c collaboration between nuclear physicists from East and West, especially in the ?eld of nuclear safety. The present book contains a selection of invited talks presented at the ARW. The papers are grouped in two parts.
The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energies and in a large variety of environments ? from particle accelerators, underground detectors to satellites and space laboratories. For these research programs to succeed, novel techniques, new materials and new instrumentation need to be used in detectors, often on a large scale. Hence, particle physics is at the forefront of technological advancement and leads to numerous applications. Among these, medical applications have a particular importance due to the health and social benefits they bring. This volume reviews the advances made in all technological aspects of current experiments in the field.