The Chemistry of Nonaqueous Solvents V4

The Chemistry of Nonaqueous Solvents V4

Author: J J Lagowski

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 326

ISBN-13: 0323139388

DOWNLOAD EBOOK

The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed by four spectroscopic techniques; the different methods used in studying redox systems in nonaqueous solvents such as potentiometry and steady state diffusion methods; and the use of tetramethylurea as a nonaqueous medium for chemical reactions and chemical investigations. The reader is also introduced to inorganic acid chlorides of high dielectric constant, with special reference to antimony trichloride, and preparation methods for cyclic carbonates including vinylene carbonate, ethylene carbonate, propylene carbonate, and butylene carbonate. The book concludes with a chapter on sulfolane, focusing on its preparation and purification, physical properties, and toxicology. This book will be of interest to chemists who want to know more about nonaqueous solvents.


Non-aqueous Solvents

Non-aqueous Solvents

Author: John R. Chipperfield

Publisher: Oxford University Press on Demand

Published: 1999

Total Pages: 86

ISBN-13: 9780198502593

DOWNLOAD EBOOK

Solvents other than water are used in chemical analysis, chemical manufacturing, and in specialized syntheses. This book covers the principles and uses of non-aqueous solvents at a level suitable for first or second-year undergraduates. The book first discusses the general properties of solvents, and introduces the necessary concepts for making rational choices of solvents for different applications. There is a discussion of the various chemical interactions between solvents and the substances dissolved in them, and how solvents change the course of reactions. The chemistry of 16 common solvents is discussed, emphasizing the advantages and disadvantages of each. The book concludes with an account of the chemistry of molten salts and discusses the use of low melting temperature compounds as synthetic media. The book expands on the brief treatment of non-aqueous solvents given in many textbooks while avoiding the complexities introduced in research treatises. It is the only book currently available that provides an in-depth treatment accessible to undergraduates.


Electrochemistry in Nonaqueous Solutions

Electrochemistry in Nonaqueous Solutions

Author: Kosuke Izutsu

Publisher: John Wiley & Sons

Published: 2009-09-22

Total Pages: 432

ISBN-13: 9783527629169

DOWNLOAD EBOOK

An excellent resource for all graduate students and researchers using electrochemical techniques. After introducing the reader to the fundamentals, the book focuses on the latest developments in the techniques and applications in this field. This second edition contains new material on environmentally-friendly solvents, such as room-temperature ionic liquids.


Solvation, Ionic and Complex Formation Reactions in Non-Aqeuous Solvents

Solvation, Ionic and Complex Formation Reactions in Non-Aqeuous Solvents

Author: K. Burger

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 269

ISBN-13: 0444597514

DOWNLOAD EBOOK

Solvation, Ionic and Complex Formation Reactions in Non-Aqueous Solvents: Experimental Methods for their Investigation presents the available methods and their particular value in investigating solutions composed of non-aqueous solvents. This book is composed of 10 chapters and begins with a brief description of the complexity of the interactions possible n solutions. The subsequent chapters deal with a classification of the solvents and empirical solvent strength scales based on various experimental parameters, together with various correlations empirically describing the solvent effect. Other chapters present the methods for the purification of solvents and ways of checking their purity, as well as the individual results achieved during investigations of the solvent effect, particularly the general regularities recognized. The remaining chapters provide a review of the coordination chemistry of non-aqueous solutions. This book will prove useful to analytical and inorganic chemists.


Acids and Bases

Acids and Bases

Author: Brian G. Cox

Publisher: OUP Oxford

Published: 2013-01-31

Total Pages: 283

ISBN-13: 0191649341

DOWNLOAD EBOOK

Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented. Fundamental background material is provided in the initial chapters: quantitative aspects of acid-base equilibria, including definitions and relationships between solution pH and species distribution; the influence of molecular structure on acid strengths; and acidity in aqueous solution. Solvent properties are reviewed, along with the magnitude of the interaction energies of solvent molecules with (especially) ions; the ability of solvents to participate in hydrogen bonding and to accept or donate electron pairs is seen to be crucial. Experimental methods for determining dissociation constants are described in detail. In the remaining chapters, dissociation constants of a wide range of acids in three distinct classes of solvents are discussed: protic solvents, such as alcohols, which are strong hydrogen-bond donors; basic, polar aprotic solvents, such as dimethylformamide; and low-basicity and low polarity solvents, such as acetonitrile and tetrahydrofuran. Dissociation constants of individual acids vary over more than 20 orders of magnitude among the solvents, and there is a strong differentiation between the response of neutral and charged acids to solvent change. Ion-pairing and hydrogen-bonding equilibria, such as between phenol and phenoxide ions, play an increasingly important role as the solvent polarity decreases, and their influence on acid-base equilibria and salt formation is described.


Chemistry in Non-Aqueous Solvents

Chemistry in Non-Aqueous Solvents

Author: B. Trémillon

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 291

ISBN-13: 9401021236

DOWNLOAD EBOOK

Arising no doubt from its pre-eminence as a natural liquid, water has always been considered by chemists as the original solvent in which very varied chemical reactions can take place, both for preparational and for analytical purposes. This explains the very long-standing interest shown in the study of aqueous solutions. In this con nection, it must be stressed that the theory of Arrhenius and Ostwald (1887-1894) on electrolytic dissociation, was originally devised solely for solutions in water and that the first true concept of acidity resulting from this is linked to the use of this solvent. The more recent development of numerous physico-chemical measurement methods has made possible an increase of knowledge in this area up to an extremely advanced degree of systematization. Thus today we have available both a very large amount of experimental data, together with very refined methods of deduction and of quantitative treatment of chemical reactions in solution which enable us to make the fullest use of this data. Nevertheless, . it appears quite evident at present that there are numerous chemical processes which cannot take place in water, and that its use as a solvent imposes 2 INTRODUCTION limitations. In order to overcome these limitations, it was natural that interest should be attracted to solvents other than water and that the new possibilities thus opened up should be explored.