Surface Properties of Electronic Materials is the fifth volume of the series, The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis. This volume indicates the present state of some basic properties of semiconductor surfaces. Chapter one summarizes the general problems in electronic materials and the areas affected by the surface science methods. The next two chapters illustrate the existing perception of the electronic and structural properties of elemental and compound semiconductor surfaces. This volume also deals with the properties of adsorption of semiconductors relating to both relevant gas phase species and metals. Chapters four to six of this volume explore compound semiconductors and elemental semiconductors. The remaining chapters of this volume explore the adsorption of metals on elemental semiconductors; aspects of growth kinetics and dynamics involved in molecular beam epitaxy; molecular beam epitaxy of silicon; insulators; and metastable phases. The last chapter covers the surface chemistry of dry etching processes.
This series of volumes is a unique summary of the present state of understanding of solid surfaces. The physical basis of chemisorption and heterogeneous catalysis is presented as a well-developed science with contributions from an international panel of chemists, physicists and metallurgists. The books are destined to become a fundamental and indispensable reference source for all those studying the nature of solid surfaces and catalysis.
This series of volumes is a unique summary of the present state of understanding of solid surfaces. The physical basis of chemisorption and heterogeneous catalysis is presented as a well-developed science with contributions from an international panel of chemists, physicists and metallurgists. The books are destined to become a fundamental and indispensable reference source for all those studying the nature of solid surfaces and catalysis.
The Chemical Physics of Solid Surfaces, Volume 6: Coadsorption, Promoters, and Poisons focuses on the processes, reactions, and approaches involved in coadsorption and the functions of promoters and poisons in synthesis and reactions. The selection first offers information on adsorbate-adsorbate interactions on metal surfaces and interaction between alkali metal adsorbates and adsorbed molecules. Discussions focus on coadsorption of alkali metals and other molecules; model experiments of catalyst promotion; effective medium theory; direct and indirect hybridization effects; and elastic interaction between adsorbates. The publication then ponders on coadsorption of carbon monoxide and hydrogen on metal surfaces and adsorption on bimetallic surfaces. The manuscript examines the chemical properties of alloy single crystal surfaces and promotion in ammonia synthesis. Topics include substrate dependence of nitrogen adsorption and ammonia synthesis; effects of promotion on nitrogen dissociation and ammonia synthesis; and theoretical modeling. The text then elaborates on promotion in the Fischer-Tropsch hydrocarbon synthesis, promoters and poisons in the water-gas shift reaction, and strong metal-support interactions. The selection is a recommended reference for physicists and readers interested in coadsorption, promoters, and poisons.
This timely text covers the theory and practice of surface and nanostructure determination by low-energy electron diffraction (LEED) and surface X-ray diffraction (SXRD): it is the first book on such quantitative structure analysis in over 30 years. It provides a detailed description of the theory, including cutting-edge developments and tested experimental methods. The focus is on quantitative techniques, while the qualitative interpretation of the LEED pattern without quantitative I(V) analysis is also included. Topics covered include the future study of nanoparticles, quasicrystals, thermal parameters, disorder and modulations of surfaces with LEED, with introductory sections enabling the non-specialist to follow all the concepts and applications discussed. With numerous colour figures throughout, this text is ideal for undergraduate and graduate students and researchers, whether experimentalists or theorists, in the fields of surface science, nanoscience and related technologies. It can serve as a textbook for graduate-level courses of one or two semesters.
Now updated-the current state of development of modern surface science Since the publication of the first edition of this book, molecular surface chemistry and catalysis science have developed rapidly and expanded into fields where atomic scale and molecular information were previously not available. This revised edition of Introduction to Surface Chemistry and Catalysis reflects this increase of information in virtually every chapter. It emphasizes the modern concepts of surface chemistry and catalysis uncovered by breakthroughs in molecular-level studies of surfaces over the past three decades while serving as a reference source for data and concepts related to properties of surfaces and interfaces. The book opens with a brief history of the evolution of surface chemistry and reviews the nature of various surfaces and interfaces encountered in everyday life. New research in two crucial areas-nanomaterials and polymer and biopolymer interfaces-is emphasized, while important applications in tribology and catalysis, producing chemicals and fuels with high turnover and selectivity, are addressed. The basic concepts surrounding various properties of surfaces such as structure, thermodynamics, dynamics, electrical properties, and surface chemical bonds are presented. The techniques of atomic and molecular scale studies of surfaces are listed with references to up-to-date review papers. For advanced readers, this book covers recent developments in in-situ surface analysis such as high- pressure scanning tunneling microscopy, ambient pressure X-ray photoelectron spectroscopy, and sum frequency generation vibrational spectroscopy (SFG). Tables listing surface structures and data summarizing the kinetics of catalytic reactions over metal surfaces are also included. New to this edition: A discussion of new physical and chemical properties of nanoparticles Ways to utilize new surface science techniques to study properties of polymers, reaction intermediates, and mobility of atoms and molecules at surfaces Molecular-level studies on the origin of the selectivity for several catalytic reactions A microscopic understanding of mechanical properties of surfaces Updated tables of experimental data A new chapter on "soft" surfaces, polymers, and biointerfaces Introduction to Surface Chemistry and Catalysis serves as a textbook for undergraduate and graduate students taking advanced courses in physics, chemistry, engineering, and materials science, as well as researchers in surface science, catalysis science, and their applications.
This series of volumes is a unique summary of the present state of understanding of solid surfaces. The physical basis of chemisorption and heterogeneous catalysis is presented as a well-developed science with contributions from an international panel of chemists, physicists and metallurgists. The books are destined to become a fundamental and indispensable reference source for all those studying the nature of solid surfaces and catalysis.