Microstructural and Mechanical Characterization of Alloys

Microstructural and Mechanical Characterization of Alloys

Author: Marek Sroka

Publisher: MDPI

Published: 2021-01-13

Total Pages: 132

ISBN-13: 3039437550

DOWNLOAD EBOOK

This book contains manuscripts related to alloys (engineering materials) to discuss potential materials, methods for improvement of the strength and cyclic properties of alloys, the stability of microstructures, the possible application of new (or improved) alloys, and the use of treatment for alloy improvement. The broad spectrum of topics included in the articles of this Special Issue demonstrates that research into the microstructural and mechanical characteristics of alloys represents a contemporary field. These topics are also envisaged to be of interest to scientists in other research centers, and we can still expect new developments in this investigation field.


Microstructural and Mechanical Property Characterization of Shear Formed Aerospace Aluminum Alloys

Microstructural and Mechanical Property Characterization of Shear Formed Aerospace Aluminum Alloys

Author: Lillianne P. Troeger

Publisher:

Published: 2000

Total Pages: 64

ISBN-13:

DOWNLOAD EBOOK

Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstruture-property relationships for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which had undergone various amounts of shear-forming strain were studied to correlate the grain structure, texture, and mechanical properties developed during and after shear forming.


Characterization of Metals and Alloys

Characterization of Metals and Alloys

Author: Ramiro Pérez Campos

Publisher: Springer

Published: 2016-10-24

Total Pages: 252

ISBN-13: 331931694X

DOWNLOAD EBOOK

This book covers various aspects of characterization of materials in the areas of metals, alloys, steels, welding, nanomaterials, intermetallic, and surface coatings. These materials are obtained by different methods and techniques like spray, mechanical milling, sol-gel, casting, biosynthesis, and chemical reduction among others. Some of these materials are classified according to application such as materials for medical application, materials for industrial applications, materials used in the oil industry and materials used like coatings. The authors provide a comprehensive overview of structural characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, image analysis, finite element method (FEM), optical microscopy (OM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), differential scanning calorimetry (DSC), ultraviolet–visible spectroscopy (UV-Vis), infrared photo-thermal radiometry (IPTR), electrochemical impedance spectroscopy (EIS), thermogravimetry analysis (TGA), thermo luminescence (TL), photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), and radio frequency (RF). The book includes theoretical models and illustrations of characterization properties—both structural and chemical.


Microstructural and Mechanical Characterization of Alloys

Microstructural and Mechanical Characterization of Alloys

Author: Marek Sroka

Publisher:

Published: 2021

Total Pages: 132

ISBN-13: 9783039437566

DOWNLOAD EBOOK

This book contains manuscripts related to alloys (engineering materials) to discuss potential materials, methods for improvement of the strength and cyclic properties of alloys, the stability of microstructures, the possible application of new (or improved) alloys, and the use of treatment for alloy improvement. The broad spectrum of topics included in the articles of this Special Issue demonstrates that research into the microstructural and mechanical characteristics of alloys represents a contemporary field. These topics are also envisaged to be of interest to scientists in other research centers, and we can still expect new developments in this investigation field.


Influence of the Microstructure on Mechanical Properties and Damage Mechanisms in Al-Si-Cu Alloys by Using 2D and 3D In-situ Analysis

Influence of the Microstructure on Mechanical Properties and Damage Mechanisms in Al-Si-Cu Alloys by Using 2D and 3D In-situ Analysis

Author: Zaidao Li

Publisher:

Published: 2016

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

2D and 3D characterization and image analysis have been performed to measure the microstructural changes associated with: different Sr, Fe and Mn levels, the casting process (Gravity Die Casting vs. Lost Foam Casting, LFC) and the solution heat treatments in A319 alloy. The evolution of microstructure in Al-Si-Cu alloy with different alloying elements addition was also studied by thermal analysis. The microstructure consists of hard inclusions, i.e. eutectic Si, iron-intermetallics and Al2Cu phases, and pores. The effect on mechanical properties of the alloys has been monitored by Vickers hardness measurement and tensile tests. Surface damage observations are performed on A319 alloys with different Fe content during in-situ tensile test, which allows following the development and localization of the deformation and cracks. Digital image correlation measurement and fractography highlighted the role of iron-intermetallics in the cracks initiation and propagation. Tensile tests on LFC A319 samples with two different heat treatment conditions were performed in-situ under Laboratory Computed Tomography. Strain measurements from digital volume correlation and observed damage mechanisms show that cracks initiate at hard inclusions in the areas with sufficient stress concentrations, which are mainly provided by large pores, and often propagate through the fracture of Al2Cu, iron-intermetallics, as well as through Si particles rather than by their decohesion from the matrix.