The Cauchy Problem in General Relativity

The Cauchy Problem in General Relativity

Author: Hans Ringström

Publisher: European Mathematical Society

Published: 2009

Total Pages: 310

ISBN-13: 9783037190531

DOWNLOAD EBOOK

The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.


Studies in the History of General Relativity

Studies in the History of General Relativity

Author: Jean Eisenstaedt

Publisher: Springer Science & Business Media

Published: 1992-02-07

Total Pages: 488

ISBN-13: 9780817634797

DOWNLOAD EBOOK

Among the considerations of the two dozen papers are the reception and development of Einstein's theory of general relativity in various institutions around the world; conceptual issues of the theory, especially themes, concepts, and principles associated with his theory of gravity; a number of tech


The Einstein Equations and the Large Scale Behavior of Gravitational Fields

The Einstein Equations and the Large Scale Behavior of Gravitational Fields

Author: Piotr T. Chruściel

Publisher: Springer Science & Business Media

Published: 2004

Total Pages: 500

ISBN-13: 9783764371302

DOWNLOAD EBOOK

Accompanying DVD-ROM contains the electronic proceedings of the summer school on mathematical general relativity and global properties of solutions of Einstein's equations held at Cargèse, Corsica, France, July 20-Aug. 10, 2002.


The Large Scale Structure of Space-Time

The Large Scale Structure of Space-Time

Author: S. W. Hawking

Publisher: Cambridge University Press

Published: 1975-02-27

Total Pages: 406

ISBN-13: 1139810952

DOWNLOAD EBOOK

Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.


3+1 Formalism in General Relativity

3+1 Formalism in General Relativity

Author: Éric Gourgoulhon

Publisher: Springer

Published: 2012-02-27

Total Pages: 304

ISBN-13: 3642245250

DOWNLOAD EBOOK

This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.


Einstein’s Field Equations and Their Physical Implications

Einstein’s Field Equations and Their Physical Implications

Author: Bernd G. Schmidt

Publisher: Springer

Published: 2008-01-11

Total Pages: 443

ISBN-13: 3540465804

DOWNLOAD EBOOK

This book serves two purposes. The authors present important aspects of modern research on the mathematical structure of Einstein's field equations and they show how to extract their physical content from them by mathematically exact methods. The essays are devoted to exact solutions and to the Cauchy problem of the field equations as well as to post-Newtonian approximations that have direct physical implications. Further topics concern quantum gravity and optics in gravitational fields. The book addresses researchers in relativity and differential geometry but can also be used as additional reading material for graduate students.


General Relativity and the Einstein Equations

General Relativity and the Einstein Equations

Author: Yvonne Choquet-Bruhat

Publisher: Oxford University Press

Published: 2009

Total Pages: 812

ISBN-13: 0199230722

DOWNLOAD EBOOK

General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.


Introduction to General Relativity, Black Holes, and Cosmology

Introduction to General Relativity, Black Holes, and Cosmology

Author: Yvonne Choquet-Bruhat

Publisher: Oxford University Press, USA

Published: 2015

Total Pages: 301

ISBN-13: 0199666466

DOWNLOAD EBOOK

A precise yet simple introduction to the foundations and main consequences of General Relativity. The first five chapters from Choquet-Bruhat's General Relativity and the Einstein Equations (2008) have been updated with new sections and chapters on black holes, gravitational waves, singularities and more to form this textbook.


The Evolution Problem in General Relativity

The Evolution Problem in General Relativity

Author: Sergiu Klainerman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 395

ISBN-13: 146122084X

DOWNLOAD EBOOK

The main goal of this work is to revisit the proof of the global stability of Minkowski space by D. Christodoulou and S. Klainerman, [Ch-KI]. We provide a new self-contained proof of the main part of that result, which concerns the full solution of the radiation problem in vacuum, for arbitrary asymptotically flat initial data sets. This can also be interpreted as a proof of the global stability of the external region of Schwarzschild spacetime. The proof, which is a significant modification of the arguments in [Ch-Kl], is based on a double null foliation of spacetime instead of the mixed null-maximal foliation used in [Ch-Kl]. This approach is more naturally adapted to the radiation features of the Einstein equations and leads to important technical simplifications. In the first chapter we review some basic notions of differential geometry that are sys tematically used in all the remaining chapters. We then introduce the Einstein equations and the initial data sets and discuss some of the basic features of the initial value problem in general relativity. We shall review, without proofs, well-established results concerning local and global existence and uniqueness and formulate our main result. The second chapter provides the technical motivation for the proof of our main theorem.


An Introduction to Mathematical Relativity

An Introduction to Mathematical Relativity

Author: José Natário

Publisher: Springer Nature

Published: 2021-03-24

Total Pages: 186

ISBN-13: 3030656837

DOWNLOAD EBOOK

This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.