Freshman and sophomore life sciences students respond well to the modeling approach to calculus, difference equations, and differential equations presented in this book. Examples of population dynamics, pharmacokinetics, and biologically relevant physical processes are introduced in Chapter 1, and these and other life sciences topics are developed throughout the text. The students should have studied algebra, geometry, and trigonometry, but may be life sciences students because they have not enjoyed their previous mathematics courses.
How math holds the keys to improving one's health, wealth, and love life? What's the best diet for overall health and weight management? How can we change our finances to retire earlier? How can we maximize our chances of finding our soul mate? In The Calculus of Happiness, Oscar Fernandez shows us that math yields powerful insights into health, wealth, and love. Using only high-school-level math (precalculus with a dash of calculus), Fernandez guides us through several of the surprising results, including an easy rule of thumb for choosing foods that lower our risk for developing diabetes (and that help us lose weight too), simple "all-weather" investment portfolios with great returns, and math-backed strategies for achieving financial independence and searching for our soul mate. Moreover, the important formulas are linked to a dozen free online interactive calculators on the book's website, allowing one to personalize the equations. Fernandez uses everyday experiences--such as visiting a coffee shop--to provide context for his mathematical insights, making the math discussed more accessible, real-world, and relevant to our daily lives. Every chapter ends with a summary of essential lessons and takeaways, and for advanced math fans, Fernandez includes the mathematical derivations in the appendices. A nutrition, personal finance, and relationship how-to guide all in one, The Calculus of Happiness invites you to discover how empowering mathematics can be.
Authored by two distinguished researchers/teachers and an experiences, successful textbook author, Calculus for Life Sciences is a valuable resource for Life Science courses. As life-science departments increase the math requirements for their majors, there is a need for greater mathematic knowledge among students. This text balances rigorous mathematical training with extensive modeling of biological problems. The biological examples from health science, ecology, microbiology, genetics, and other domains, many based on cited data, are key features of this text.
Discover the transformative insights of movement pioneer Moshe Feldenkrais Essential reading for somatic practitioners, movement teachers, performing artists, and anyone interested in self-improvement and healing As a scientist, martial artist, and founder of the Feldenkrais Method, Moshe Feldenkrais wrote several influential books on the relationship between movement, learning, and health. The Elusive Obvious is a thorough and accessible explanation of the method that is more relevant today than when it was first published, as current research strongly supports many of its insights. The Feldenkrais Method has two main strands: Awareness Through Movement and Functional Integration. Both are renowned worldwide for their ability to reduce pain and anxiety, cultivate vitality, and improve performance. This new edition of The Elusive Obvious includes a beautiful presentation featuring a fold-out insert with illustrations that depict these two approaches. By uncovering solutions that are often hidden in plain sight, this book can help you learn to move with greater ease, grace, and efficiency through the Feldenkrais Method.
For many students, calculus can be the most mystifying and frustrating course they will ever take. Based upon Adrian Banner's popular calculus review course at Princeton University, this book provides students with the essential tools they need not only to learn calculus, but also to excel at it.
The Calculus of Friendship is the story of an extraordinary connection between a teacher and a student, as chronicled through more than thirty years of letters between them. What makes their relationship unique is that it is based almost entirely on a shared love of calculus. For them, calculus is more than a branch of mathematics; it is a game they love playing together, a constant when all else is in flux. The teacher goes from the prime of his career to retirement, competes in whitewater kayaking at the international level, and loses a son. The student matures from high school math whiz to Ivy League professor, suffers the sudden death of a parent, and blunders into a marriage destined to fail. Yet through it all they take refuge in the haven of calculus--until a day comes when calculus is no longer enough. Like calculus itself, The Calculus of Friendship is an exploration of change. It's about the transformation that takes place in a student's heart, as he and his teacher reverse roles, as they age, as they are buffeted by life itself. Written by a renowned teacher and communicator of mathematics, The Calculus of Friendship is warm, intimate, and deeply moving. The most inspiring ideas of calculus, differential equations, and chaos theory are explained through metaphors, images, and anecdotes in a way that all readers will find beautiful, and even poignant. Math enthusiasts, from high school students to professionals, will delight in the offbeat problems and lucid explanations in the letters. For anyone whose life has been changed by a mentor, The Calculus of Friendship will be an unforgettable journey.
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed. Calculus for the Life Sciences features interesting, relevant applications that motivate students and highlight the utility of mathematics for the life sciences. This edition also features new ways to engage students with the material, such as Your Turn exercises.
Mathematics for the Life Sciences provides present and future biologists with the mathematical concepts and tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas, and providing detailed explanations. The author assumes no mathematics background beyond algebra and precalculus. Calculus is presented as a one-chapter primer that is suitable for readers who have not studied the subject before, as well as readers who have taken a calculus course and need a review. This primer is followed by a novel chapter on mathematical modeling that begins with discussions of biological data and the basic principles of modeling. The remainder of the chapter introduces the reader to topics in mechanistic modeling (deriving models from biological assumptions) and empirical modeling (using data to parameterize and select models). The modeling chapter contains a thorough treatment of key ideas and techniques that are often neglected in mathematics books. It also provides the reader with a sophisticated viewpoint and the essential background needed to make full use of the remainder of the book, which includes two chapters on probability and its applications to inferential statistics and three chapters on discrete and continuous dynamical systems. The biological content of the book is self-contained and includes many basic biology topics such as the genetic code, Mendelian genetics, population dynamics, predator-prey relationships, epidemiology, and immunology. The large number of problem sets include some drill problems along with a large number of case studies. The latter are divided into step-by-step problems and sorted into the appropriate section, allowing readers to gradually develop complete investigations from understanding the biological assumptions to a complete analysis.
This book explores the exciting world of theoretical biology and is divided into three sections. The first section examines the roles played by renowned scientists such as Jacob, Monod, Rosen, Turing, von Bertalanffy, Waddington and Woodger in developing the field of theoretical biology. The second section, aided with numerous examples, supports the idea that logic and computing are suitable formal languages to describe and understand biological phenomena. The third and final section is, without doubt, the most intellectually challenging and endeavors to show the possible paths we could take to compute a cell - the basic unit of life - or the conditions required for a predictive theory of biological evolution; ultimately, a theory of life in the light of modern Systems Biology. The work aims to show that modern biology is closer than ever to making Goethe's dream come true and that we have reached a point where synthetic and analytical traditions converge to shed light on the living being as a whole.