"The Art of Agent-Oriented Modeling is an introduction to agent-oriented software development for students and for software developers who are interested in learning about new software engineering techniques."--Foreword.
To fully understand not only the past, but also the trajectories, of human societies, we need a more dynamic view of human social systems. Agent-based modeling (ABM), which can create fine-scale models of behavior over time and space, may reveal important, general patterns of human activity. Agent-Based Modeling for Archaeology is the first ABM textbook designed for researchers studying the human past. Appropriate for scholars from archaeology, the digital humanities, and other social sciences, this book offers novices and more experienced ABM researchers a modular approach to learning ABM and using it effectively. Readers will find the necessary background, discussion of modeling techniques and traps, references, and algorithms to use ABM in their own work. They will also find engaging examples of how other scholars have applied ABM, ranging from the study of the intercontinental migration pathways of early hominins, to the weather–crop–population cycles of the American Southwest, to the trade networks of Ancient Rome. This textbook provides the foundations needed to simulate the complexity of past human societies, offering researchers a richer understanding of the past—and likely future—of our species.
Agent-based modeling is a new technique for understanding how the dynamics of biological, social, and other complex systems arise from the characteristics and behaviors of the agents making up these systems. This innovative textbook gives students and scientists the skills to design, implement, and analyze agent-based models. It starts with the fundamentals of modeling and provides an introduction to NetLogo, an easy-to-use, free, and powerful software platform. Nine chapters then each introduce an important modeling concept and show how to implement it using NetLogo. The book goes on to present strategies for finding the right level of model complexity and developing theory for agent behavior, and for analyzing and learning from models. Agent-Based and Individual-Based Modeling features concise and accessible text, numerous examples, and exercises using small but scientific models. The emphasis throughout is on analysis--such as software testing, theory development, robustness analysis, and understanding full models--and on design issues like optimizing model structure and finding good parameter values. The first hands-on introduction to agent-based modeling, from conceptual design to computer implementation to parameterization and analysis Provides an introduction to NetLogo with nine chapters introducing an important modeling concept and showing how to implement it using NetLogo Filled with examples and exercises, with updates and supplementary materials at http://www.railsback-grimm-abm-book.com/ Designed for students and researchers across the biological and social sciences Written by leading practitioners Leading universities that have adopted this book include: Amherst College Brigham Young University Carnegie Mellon University Cornell University Miami University Northwestern University Old Dominion University Portland State University Rhodes College Susquehanna University University College, Dublin University of Arizona University of British Columbia University of Michigan University of South Florida University of Texas at Austin University of Virginia
Although there are plenty of publications dealing with the theory of multi-agent systems and agent-based simulations, information about the practical development of such systems is scarce. The aim of this book is to fill this empty space and to provide knowledge about design and development of agent-based simulations in an easy and comprehensible way. The book begins with the fundamentals of multi-agent systems, agent principles and their interaction, and goes on to discuss the philosophy of agent-based programming. Agent-based models - like any other scientific method - have drawbacks and limitations, which are presented in the book as well. The main portion of the text is then devoted to a description of methodology and best practices for the design and development of agent-based simulation software. The methodology (called Agentology) guides the reader through the entire development process, from the formal definition of the problem, through conceptual modeling and the selection of the particular development platform, to the programming and debugging of the code itself and the final assessment of the model. The visual language as the means of representation of the conceptual model is included. The reader is also presented with a comparison of present multi-agent development environments and tools, which could be helpful for the selection of appropriate development instruments. Given that the theoretical foundation is presented in an accessible way and supported by many practical examples, figures, schemes and source codes, this publication is especially suitable as a textbook for introductory graduate-level courses on multi-agent systems and agent-based modeling. Besides appealing to students and the scientific community, the monograph can aid software architects and developers who are not familiar with agent principles, conveying valuable insights into this distinct computer paradigm.
This unique book brings together a comprehensive set of papers on the background, theory, technical issues and applications of agent-based modelling (ABM) within geographical systems. This collection of papers is an invaluable reference point for the experienced agent-based modeller as well those new to the area. Specific geographical issues such as handling scale and space are dealt with as well as practical advice from leading experts about designing and creating ABMs, handling complexity, visualising and validating model outputs. With contributions from many of the world’s leading research institutions, the latest applied research (micro and macro applications) from around the globe exemplify what can be achieved in geographical context. This book is relevant to researchers, postgraduate and advanced undergraduate students, and professionals in the areas of quantitative geography, spatial analysis, spatial modelling, social simulation modelling and geographical information sciences.
The only single-source guide to understanding, using, adapting, and designing state-of-the-art agent-based modelling of tax evasion A computational method for simulating the behavior of individuals or groups and their effects on an entire system, agent-based modeling has proven itself to be a powerful new tool for detecting tax fraud. While interdisciplinary groups and individuals working in the tax domain have published numerous articles in diverse peer-reviewed journals and have presented their findings at international conferences, until Agent-based Modelling of Tax Evasion there was no authoritative, single-source guide to state-of-the-art agent-based tax evasion modeling techniques and technologies. Featuring contributions from distinguished experts in the field from around the globe, Agent-Based Modelling of Tax Evasion provides in-depth coverage of an array of field tested agent-based tax evasion models. Models are presented in a unified format so as to enable readers to systematically work their way through the various modeling alternatives available to them. Three main components of each agent-based model are explored in accordance with the Overview, Design Concepts, and Details (ODD) protocol, each section of which contains several sub elements that help to illustrate the model clearly and that assist readers in replicating the modeling results described. Presents models in a unified and structured manner to provide a point of reference for readers interested in agent-based modelling of tax evasion Explores the theoretical aspects and diversity of agent-based modeling through the example of tax evasion Provides an overview of the characteristics of more than thirty agent-based tax evasion frameworks Functions as a solid foundation for lectures and seminars on agent-based modelling of tax evasion The only comprehensive treatment of agent-based tax evasion models and their applications, this book is an indispensable working resource for practitioners and tax evasion modelers both in the agent-based computational domain and using other methodologies. It is also an excellent pedagogical resource for teaching tax evasion modeling and/or agent-based modeling generally.
Introduction to Agent-Based Economics describes the principal elements of agent-based computational economics (ACE). It illustrates ACE's theoretical foundations, which are rooted in the application of the concept of complexity to the social sciences, and it depicts its growth and development from a non-linear out-of-equilibrium approach to a state-of-the-art agent-based macroeconomics. The book helps readers gain a better understanding of the limits and perspectives of the ACE models and their capacity to reproduce economic phenomena and empirical patterns. - Reviews the literature of agent-based computational economics - Analyzes approaches to agents' expectations - Covers one of the few large macroeconomic agent-based models, the Modellaccio - Illustrates both analytical and computational methodologies for producing tractable solutions of macro ACE models - Describes diffusion and amplification mechanisms - Depicts macroeconomic experiments related to ACE implementations
This is the era of Big Data and computational social science. It is an era that requires tools which can do more than visualise data but also model the complex relation between data and human action, and interaction. Agent-Based Models (ABM) - computational models which simulate human action and interaction – do just that. This textbook explains how to design and build ABM and how to link the models to Geographical Information Systems. It guides you from the basics through to constructing more complex models which work with data and human behaviour in a spatial context. All of the fundamental concepts are explained and related to practical examples to facilitate learning (with models developed in NetLogo with all code examples available on the accompanying website). You will be able to use these models to develop your own applications and link, where appropriate, to Geographical Information Systems. All of the key ideas and methods are explained in detail: geographical modelling; an introduction to ABM; the fundamentals of Geographical Information Science; why ABM and GIS; using QGIS; designing and building an ABM; calibration and validation; modelling human behavior. An applied primer, that provides fundamental knowledge and practical skills, it will provide you with the skills to build and run your own models, and to begin your own research projects.
This clear and coherent book introduces agent-based modelling (ABM) to those who are not familiar with nor have been previously exposed to computational simulation. Featuring examples, cases and models, the book illustrates how ABM can, and should, be considered as a useful approach and technique for the study of management and organisational systems. Davide Secchi begins by explaining what ABM has to offer as opposed to other techniques, emphasising its suitability to the study of complex social systems. While dissecting the core components of the approach, he introduces key elements and mechanisms with a practice oriented approach rather than insisting solely on logic and theory. With an emphasis on applications and using examples from NetLogo -- one of the most widely used agent-based software platforms -- the book guides the reader through a step-by-step process on how to develop a computational simulation. Featuring a hands-on applied approach that makes a difficult topic easy for non-modellers, How Do I Develop an Agent-Based Model? will be a key resource for business and management Masters-level students embarking on a dissertation project. It will also be a useful reference for PhD students in the field, as well as a starting point for academics who would like to begin using ABM in their research.
Operational Research (OR) deals with the use of advanced analytical methods to support better decision-making. It is multidisciplinary with strong links to management science, decision science, computer science and many application areas such as engineering, manufacturing, commerce and healthcare. In the study of emergent behaviour in complex adaptive systems, Agent-based Modelling & Simulation (ABMS) is being used in many different domains such as healthcare, energy, evacuation, commerce, manufacturing and defense. This collection of articles presents a convenient introduction to ABMS with papers ranging from contemporary views to representative case studies. The OR Essentials series presents a unique cross-section of high quality research work fundamental to understanding contemporary issues and research across a range of Operational Research (OR) topics. It brings together some of the best research papers from the esteemed Operational Research Society and its associated journals, also published by Palgrave Macmillan.