The Analysis of Solutions of Elliptic Equations

The Analysis of Solutions of Elliptic Equations

Author: Nikolai Tarkhanov

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 496

ISBN-13: 940158804X

DOWNLOAD EBOOK

This book is intended as a continuation of my book "Parametrix Method in the Theory of Differential Complexes" (see [291]). There, we considered complexes of differential operators between sections of vector bundles and we strived more than for details. Although there are many applications to for maximal generality overdetermined systems, such an approach left me with a certain feeling of dissat- faction, especially since a large number of interesting consequences can be obtained without a great effort. The present book is conceived as an attempt to shed some light on these new applications. We consider, as a rule, differential operators having a simple structure on open subsets of Rn. Currently, this area is not being investigated very actively, possibly because it is already very highly developed actively (cf. for example the book of Palamodov [213]). However, even in this (well studied) situation the general ideas from [291] allow us to obtain new results in the qualitative theory of differential equations and frequently in definitive form. The greater part of the material presented is related to applications of the L- rent series for a solution of a system of differential equations, which is a convenient way of writing the Green formula. The culminating application is an analog of the theorem of Vitushkin [303] for uniform and mean approximation by solutions of an elliptic system. Somewhat afield are several questions on ill-posedness, but the parametrix method enables us to obtain here a series of hitherto unknown facts.


Fine Regularity of Solutions of Elliptic Partial Differential Equations

Fine Regularity of Solutions of Elliptic Partial Differential Equations

Author: Jan MalĂ˝

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 309

ISBN-13: 0821803352

DOWNLOAD EBOOK

The primary objective of this monograph is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second order elliptic quasilinear equations in divergence form. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The book concludes with a chapter devoted to the existence theory thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.


Stable Solutions of Elliptic Partial Differential Equations

Stable Solutions of Elliptic Partial Differential Equations

Author: Louis Dupaigne

Publisher: CRC Press

Published: 2011-03-15

Total Pages: 334

ISBN-13: 1420066552

DOWNLOAD EBOOK

Stable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces). Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.


Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations

Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations

Author: Vicentiu D. Radulescu

Publisher: Hindawi Publishing Corporation

Published: 2008

Total Pages: 205

ISBN-13: 9774540395

DOWNLOAD EBOOK

This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.


Morse Index of Solutions of Nonlinear Elliptic Equations

Morse Index of Solutions of Nonlinear Elliptic Equations

Author: Lucio Damascelli

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-08

Total Pages: 269

ISBN-13: 3110538245

DOWNLOAD EBOOK

This monograph presents in a unified manner the use of the Morse index, and especially its connections to the maximum principle, in the study of nonlinear elliptic equations. The knowledge or a bound on the Morse index of a solution is a very important qualitative information which can be used in several ways for different problems, in order to derive uniqueness, existence or nonexistence, symmetry, and other properties of solutions.


Convex Analysis and Nonlinear Geometric Elliptic Equations

Convex Analysis and Nonlinear Geometric Elliptic Equations

Author: Ilya J. Bakelman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 524

ISBN-13: 3642698816

DOWNLOAD EBOOK

Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.


The Numerical Solution of Elliptic Equations

The Numerical Solution of Elliptic Equations

Author: Garrett Birkhoff

Publisher: SIAM

Published: 1971-01-01

Total Pages: 93

ISBN-13: 0898710014

DOWNLOAD EBOOK

A concise survey of the current state of knowledge in 1972 about solving elliptic boundary-value eigenvalue problems with the help of a computer. This volume provides a case study in scientific computing?the art of utilizing physical intuition, mathematical theorems and algorithms, and modern computer technology to construct and explore realistic models of problems arising in the natural sciences and engineering.


Global Solution Curves for Semilinear Elliptic Equations

Global Solution Curves for Semilinear Elliptic Equations

Author: Philip Korman

Publisher: World Scientific

Published: 2012

Total Pages: 254

ISBN-13: 9814374350

DOWNLOAD EBOOK

This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results.


Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations

Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations

Author: Vladimir Kozlov

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 449

ISBN-13: 0821827278

DOWNLOAD EBOOK

This book focuses on the analysis of eigenvalues and eigenfunctions that describe singularities of solutions to elliptic boundary value problems in domains with corners and edges. The authors treat both classical problems of mathematical physics and general elliptic boundary value problems. The volume is divided into two parts: The first is devoted to the power-logarithmic singularities of solutions to classical boundary value problems of mathematical physics. The second deals with similar singularities for higher order elliptic equations and systems. Chapter 1 collects basic facts concerning operator pencils acting in a pair of Hilbert spaces. Related properties of ordinary differential equations with constant operator coefficients are discussed and connections with the theory of general elliptic boundary value problems in domains with conic vertices are outlined. New results are presented. Chapter 2 treats the Laplace operator as a starting point and a model for the subsequent study of angular and conic singularities of solutions. Chapter 3 considers the Dirichlet boundary condition beginning with the plane case and turning to the space problems. Chapter 4 investigates some mixed boundary conditions. The Stokes system is discussed in Chapters 5 and 6, and Chapter 7 concludes with the Dirichlet problem for the polyharmonic operator. Chapter 8 studies the Dirichlet problem for general elliptic differential equations of order 2m in an angle. In Chapter 9, an asymptotic formula for the distribution of eigenvalues of operator pencils corresponding to general elliptic boundary value problems in an angle is obtained. Chapters 10 and 11 discuss the Dirichlet problem for elliptic systems of differential equations of order 2 in an n-dimensional cone. Chapter 12 studies the Neumann problem for general elliptic systems, in particular with eigenvalues of the corresponding operator pencil in the strip $\mid {\Re} \lambda - m + /2n \mid \leq 1/2$. It is shown that only integer numbers contained in this strip are eigenvalues. Applications are placed within chapter introductions and as special sections at the end of chapters. Prerequisites include standard PDE and functional analysis courses.


Singular Solutions of Nonlinear Elliptic and Parabolic Equations

Singular Solutions of Nonlinear Elliptic and Parabolic Equations

Author: Alexander A. Kovalevsky

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-03-21

Total Pages: 531

ISBN-13: 3110390086

DOWNLOAD EBOOK

This monograph looks at several trends in the investigation of singular solutions of nonlinear elliptic and parabolic equations. It discusses results on the existence and properties of weak and entropy solutions for elliptic second-order equations and some classes of fourth-order equations with L1-data and questions on the removability of singularities of solutions to elliptic and parabolic second-order equations in divergence form. It looks at localized and nonlocalized singularly peaking boundary regimes for different classes of quasilinear parabolic second- and high-order equations in divergence form. The book will be useful for researchers and post-graduate students that specialize in the field of the theory of partial differential equations and nonlinear analysis. Contents: Foreword Part I: Nonlinear elliptic equations with L^1-data Nonlinear elliptic equations of the second order with L^1-data Nonlinear equations of the fourth order with strengthened coercivity and L^1-data Part II: Removability of singularities of the solutions of quasilinear elliptic and parabolic equations of the second order Removability of singularities of the solutions of quasilinear elliptic equations Removability of singularities of the solutions of quasilinear parabolic equations Quasilinear elliptic equations with coefficients from the Kato class Part III: Boundary regimes with peaking for quasilinear parabolic equations Energy methods for the investigation of localized regimes with peaking for parabolic second-order equations Method of functional inequalities in peaking regimes for parabolic equations of higher orders Nonlocalized regimes with singular peaking Appendix: Formulations and proofs of the auxiliary results Bibliography