Tells the behind-the-scenes story of the designers and engineers who conceived and built Grumman aircraft from the founding of the company in 1929 until its 1994 acquisition by Northrop. This book also identifies key team members who contributed to the creation and development of each new design.
This book provides an accessible introduction to the fundamentals of civil and military aircraft design. Giving a largely descriptive overview of all aspects of the design process, this well-illustrated account provides an insight into the requirements of each specialist in an aircraft design team. After discussing the need for new designs, the text assesses the merits of different aircraft shapes from micro-lights and helicopters to super-jumbos and V/STOL aircraft. Following chapters explore structures, airframe systems, avionics and weapons systems. Later chapters examine the costs involved in the acquisition and operation of new aircraft, aircraft reliability and maintainability, and a variety of unsuccessful projects to see what conclusions can be drawn. Three appendices and a bibliography give a wealth of useful information, much not published elsewhere, including simple aerodynamic formulae, aircraft, engine and equipment data and a detailed description of a parametric study of a 500-seat transport aircraft.
Find the right answer the first time with this useful handbook of preliminary aircraft design. Written by an engineer with close to 20 years of design experience, General Aviation Aircraft Design: Applied Methods and Procedures provides the practicing engineer with a versatile handbook that serves as the first source for finding answers to realistic aircraft design questions. The book is structured in an "equation/derivation/solved example" format for easy access to content. Readers will find it a valuable guide to topics such as sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design. In most cases, numerical examples involve actual aircraft specs. Concepts are visually depicted by a number of useful black-and-white figures, photos, and graphs (with full-color images included in the eBook only). Broad and deep in coverage, it is intended for practicing engineers, aerospace engineering students, mathematically astute amateur aircraft designers, and anyone interested in aircraft design. - Organized by articles and structured in an "equation/derivation/solved example" format for easy access to the content you need - Numerical examples involve actual aircraft specs - Contains high-interest topics not found in other texts, including sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design - Provides a unique safety-oriented design checklist based on industry experience - Discusses advantages and disadvantages of using computational tools during the design process - Features detailed summaries of design options detailing the pros and cons of each aerodynamic solution - Includes three case studies showing applications to business jets, general aviation aircraft, and UAVs - Numerous high-quality graphics clearly illustrate the book's concepts (note: images are full-color in eBook only)
This textbook for advanced students focuses on industry design practice rather than theoretical definitions. Covers configuration layout, payload considerations, aerodynamics, propulsion, structure and loads, weights, stability, and control, performance, and cost analysis. Annotation copyright Book
Aircraft Design explores fixed winged aircraft design at the conceptual phase of a project. Designing an aircraft is a complex multifaceted process embracing many technical challenges in a multidisciplinary environment. By definition, the topic requires intelligent use of aerodynamic knowledge to configure aircraft geometry suited specifically to the customer's demands. It involves estimating aircraft weight and drag and computing the available thrust from the engine. The methodology shown here includes formal sizing of the aircraft, engine matching, and substantiating performance to comply with the customer's demands and government regulatory standards. Associated topics include safety issues, environmental issues, material choice, structural layout, understanding flight deck, avionics, and systems (for both civilian and military aircraft). Cost estimation and manufacturing considerations are also discussed. The chapters are arranged to optimize understanding of industrial approaches to aircraft design methodology. Example exercises from the author's industrial experience dealing with a typical aircraft design are included.
A comprehensive approach to the air vehicle design process using the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required. Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout the book the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall. Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aero-structure, and flight dynamics will find this book ideal to progress towards the next stage in their understanding of the topic. Furthermore, the broad variety of design techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approaching real-world projects. Key features: • Provides full coverage of the design aspects of an air vehicle including: aeronautical concepts, design techniques and design flowcharts • Features end of chapter problems to reinforce the learning process as well as fully solved design examples at component level • Includes fundamental explanations for aeronautical engineering students and practicing engineers • Features a solutions manual to sample questions on the book’s companion website Companion website - www.wiley.com/go/sadraey
Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread. Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to “what if” questions rapidly and with little computational cost. Key features: Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.
The aircraft is only a transport mechanism for the payload, and all design decisions must consider payload first. Simply stated, the aircraft is a dust cover. "Fundamentals of Aircraft and Airship Design, Volume 1: Aircraft Design" emphasizes that the science and art of the aircraft design process is a compromise and that there is no right answer; however, there is always a best answer based on existing requirements and available technologies.
Winner of the Summerfield Book Award Winner of the Aviation-Space Writers Association Award of Excellence. --Over 30,000 copies sold, consistently the top-selling AIAA textbook title This highly regarded textbook presents the entire process of aircraft conceptual designfrom requirements definition to initial sizing, configuration layout, analysis, sizing, and trade studiesin the same manner seen in industry aircraft design groups. Interesting and easy to read, the book has more than 800 pages of design methods, illustrations, tips, explanations, and equations, and extensive appendices with key data essential to design. It is the required design text at numerous universities around the world, and is a favorite of practicing design engineers.