The Aerodynamics of Heavy Vehicles III

The Aerodynamics of Heavy Vehicles III

Author: Andreas Dillmann

Publisher: Springer

Published: 2015-08-19

Total Pages: 416

ISBN-13: 3319201220

DOWNLOAD EBOOK

This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future. This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.


The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains

The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains

Author: Rose McCallen

Publisher: Springer Science & Business Media

Published: 2004-09

Total Pages: 590

ISBN-13: 9783540220886

DOWNLOAD EBOOK

This book includes the carefully edited contributions to the United Engineering Foundation Conference: The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held in Monterey, California from December 2-6, 2002. This conference brought together 90 leading engineering researchers discussing the aerodynamic drag of heavy vehicles. The book topics include a comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry are presented as well, along with their use in evaluating drag reduction devices.


The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains

The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains

Author: Fred Browand

Publisher: Springer Science & Business Media

Published: 2008-09-30

Total Pages: 453

ISBN-13: 3540850708

DOWNLOAD EBOOK

It is our pleasure to present these proceedings for “The Aerodynamics of Heavy Vehicles II: Trucks, Buses and Trains” International Conference held in Lake - hoe, California, August 26-31, 2007 by Engineering Conferences International (ECI). Brought together were the world’s leading scientists and engineers from industry, universities, and research laboratories, including truck and high-speed train manufacturers and operators. All were gathered to discuss computer simu- tion and experimental techniques to be applied for the design of the more efficient trucks, buses and high-speed trains required in future years. This was the second conference in the series. The focus of the first conference in 2002 was the interplay between computations and experiment in minimizing ae- dynamic drag. The present proceedings, from the 2007 conference, address the development and application of advanced aerodynamic simulation and experim- tal methods for state-of-the-art analysis and design, as well as the development of new ideas and trends holding promise for the coming 10-year time span. Also - cluded, are studies of heavy vehicle aerodynamic tractor and trailer add-on - vices, studies of schemes to delay undesirable flow separation, and studies of - derhood thermal management.


Aerodynamics of Road Vehicles

Aerodynamics of Road Vehicles

Author: Wolf-Heinrich Hucho

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 577

ISBN-13: 1483102076

DOWNLOAD EBOOK

Aerodynamics of Road Vehicles details the aerodynamics of passenger cars, commercial vehicles, sports cars, and race cars; their external flow field; as well as their internal flow field. The book, after giving an introduction to automobile aerodynamics and some fundamentals of fluid mechanics, covers topics such as the performance and aerodynamics of different kinds of vehicles, as well as test techniques for their aerodynamics. The book also covers other concepts related to automobiles such as cooling systems and ventilations for vehicles. The text is recommended for mechanical engineers and phycisists in the automobile industry who would like to understand more about aerodynamics of motor vehicles and its importance on the field of road safety and automobile production.


The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains

The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains

Author: Rose McCallen

Publisher: Springer Science & Business Media

Published: 2013-07-30

Total Pages: 534

ISBN-13: 354044419X

DOWNLOAD EBOOK

It is our pleasure to present these proceedings from the United Engineering Foundation Conference on The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held December 2-6, 2002, in Monterey, California. This Department of Energy, United Engineering Foundation, and industry sponsored conference brought together 90 leading engineering researchers from around the world to discuss the aerodynamic drag of heavy vehicles. Participants from national labs, academia, and industry, including truck manufacturers, discussed how computer simulation and experimental techniques could be used to design more fuel efficient trucks, buses, and trains. Conference topics included comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from the Department of Energy sponsored and other wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry were presented, along with their use in evaluating drag reduction devices. We would like to thank the UEF conference organizers for their dedication and quick response to sudden deadlines. In addition, we would like to thank all session chairs, the scientific advisory committee, authors, and reviewers for their many hours of dedicated effort that contributed to a successful conference and resulted in this document of the conference proceedings. We also gratefully acknowledge the support received from the United Engineering Foundation, the US Department of Energy, Lawrence Livermore National Laboratory, Volvo Trucks America, International Truck and Engine Corporation, and Freightliner LLC.


Aerodynamics of Road Vehicles

Aerodynamics of Road Vehicles

Author: Thomas Christian Schuetz

Publisher: SAE International

Published: 2015-12-30

Total Pages: 1312

ISBN-13: 0768082536

DOWNLOAD EBOOK

The detailed presentation of fundamental aerodynamics principles that influence and improve vehicle design have made Aerodynamics of Road Vehicles the engineer’s “source” for information. This fifth edition features updated and expanded information beyond that which was presented in previous releases. Completely new content covers lateral stability, safety and comfort, wind noise, high performance vehicles, helmets, engine cooling, and computational fluid dynamics. A proven, successful engineering design approach is presented that includes: • Fundamentals of fluid mechanics related to vehicle aerodynamics • Essential experimental results that are the ground rules of fluid mechanics • Design strategies for individual experimental results • General design solutions from combined experimental results The aerodynamics of passenger cars, commercial vehicles, motorcycles, sports cars, and race cars is dealt with in detail, inclusive of systems, testing techniques, measuring and numerical aerodynamics methods and simulations that significantly contribute to vehicle development. Aerodynamics of Road Vehicles is an excellent reference tool and an indispensable source for the industry’s vehicle engineers, designers, and researchers, as well as for enthusiasts, students, and those working in academia or government regulatory agencies.


Theory and Applications of Aerodynamics for Ground Vehicles

Theory and Applications of Aerodynamics for Ground Vehicles

Author: T Yomi Obidi

Publisher: SAE International

Published: 2014-03-20

Total Pages: 290

ISBN-13: 076808105X

DOWNLOAD EBOOK

This book provides an introduction to ground vehicle aerodynamics and methodically guides the reader through the various aspects of the subject. Those needing specific information or a refresher can easily jump to the material of interest. There is a particular emphasis on various vehicle types (passenger cars, trucks, trains, motorcycles, race cars, etc.). However, the book is focused on cars and trucks, which are the most common vehicles in the speed range in which the study of ground vehicle aerodynamics is beneficial. Readers will gain a fundamental understanding of the topic, which will help them design vehicles that have improved aerodynamics; this will lead to better fuel efficiency, improved performance, and increased passenger comfort. The author’s basic approach to the presentation of the material is complemented with review questions, application questions, exercises, and suggested projects at the end of most of the chapters, which helps the reader apply the information presented, either in the classroom or for self-study. Aside from offering a solid understanding of ground vehicle aerodynamics, the book also offers more thorough study of several key topics. One such topic is car-truck interaction, when one vehicle (usually the smaller one) is overtaking the other. There is a direct and instant benefit in terms of safety on the highway from understanding the forces at play when one vehicle passes the other in the same direction and sense. Chapters examine: • Drag • Noise and vehicle soiling • Wind tunnels and road/track testing • Numerical methods • Vehicle stability and control • Vehicle sectional design • Large vehicles: trucks, trailers, buses, trains • Severe service and off-road vehicles • Race cars and convertibles • Motorcycles • Concept vehicles


Computational Aerodynamic Modeling of Aerospace Vehicles

Computational Aerodynamic Modeling of Aerospace Vehicles

Author: Mehdi Ghoreyshi

Publisher: MDPI

Published: 2019-03-08

Total Pages: 294

ISBN-13: 3038976105

DOWNLOAD EBOOK

Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.


The Best of COMVEC 2016 Select Technical Papers from the SAE Commercial Vehicle Engineering Congress

The Best of COMVEC 2016 Select Technical Papers from the SAE Commercial Vehicle Engineering Congress

Author: Kevin Jost

Publisher: SAE International

Published: 2016-09-24

Total Pages: 102

ISBN-13: 0768083893

DOWNLOAD EBOOK

This special collection highlights some of the best technical papers that represent the breadth of the entire technical program. Leading industry perspectives are reflected by the corporate contributions that are included in this group, along with a specific focus on connectivity, the theme of the 2016 event. The commercial vehicle industry has always been focused on improving efficiency. These ten characteristic offerings present cutting-edge trends, technologies, and solutions that provide greater benefit and the application of knowledge to solve problems and guide future innovation. These studies are presented by experts from industrial, governmental, and academic partners on topics that include: • Autonomous commercial vehicles • Computational fluid dynamics and aerodynamics for heavy-duty, on-road applications • Fuel and emissions efficiency of medium-duty powertrain configurations • Intelligently controlled air-suspension systems • Improving total cost of ownership by gains in thermal efficiency • New simulation and testing techniques enabling next generation commercial vehicle technology The leadership team has focused on bringing in a broad mixture of participants to COMVEC to discuss current technologies and the future challenges of the commercial vehicle industry. This first of its kind special publication draws on the strength of the event’s program and features ten of the best technical papers from the SAE International Congress.


Machine Learning Control – Taming Nonlinear Dynamics and Turbulence

Machine Learning Control – Taming Nonlinear Dynamics and Turbulence

Author: Thomas Duriez

Publisher: Springer

Published: 2016-11-02

Total Pages: 229

ISBN-13: 3319406248

DOWNLOAD EBOOK

This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.