Terrestrial Rare Gases
Author: E. C. Alexander (Jr.)
Publisher:
Published: 1978
Total Pages: 250
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: E. C. Alexander (Jr.)
Publisher:
Published: 1978
Total Pages: 250
ISBN-13:
DOWNLOAD EBOOKAuthor: Pete Burnard
Publisher: Springer Science & Business Media
Published: 2012-12-15
Total Pages: 390
ISBN-13: 3642288367
DOWNLOAD EBOOKThe twelve chapters of this volume aim to provide a complete manual for using noble gases in terrestrial geochemistry, covering applications which range from high temperature processes deep in the Earth’s interior to tracing climatic variations using noble gases trapped in ice cores, groundwaters and modern sediments. Other chapters cover noble gases in crustal (aqueous, CO2 and hydrocarbon) fluids and laboratory techniques for determining noble gas solubilities and diffusivities under geologically relevant conditions. Each chapter deals with the fundamentals of the analysis and interpretation of the data, detailing sampling and sampling strategies, techniques for analysis, sources of error and their estimation, including data treatment and data interpretation using recent case studies.
Author: Donald P. Porcelli
Publisher: Walter de Gruyter GmbH & Co KG
Published: 2018-12-17
Total Pages: 864
ISBN-13: 1501509055
DOWNLOAD EBOOKVolume 47 of Reviews in Mineralogy and Geochemistry introduces to Noble Gases. Although the mass spectrometry principles are not complex, the tricks involved in getting better data are often self taught or passed on by working with individuals who themselves are pushing the boundaries further. Furthermore, much of the exciting new science is linked with technical developments that allow us to move beyond the current measurement capabilities. Be they better crushing devices, laser resonance time of flight, multiple collection or compressor sources - the technical issues are central to progress. Contents: Noble Gases – Noble Science An Overview of Noble Gas Geochemistry and Cosmochemistry Noble Gases in the Solar System Noble Gases in the Moon and Meteorites: Radiogenic Components and Early Volatile Chronologies Cosmic-Ray-Produced Noble Gases in Meteorites Martian Noble Gases Origin of Noble Gases in the Terrestrial Planets Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs Noble Gases and Volatile Recycling at Subduction Zones The Storage and Transport of Noble Gases in the Subcontinental Lithosphere Models for the Distribution of Terrestrial Noble Gases and the Evolution of the Atmosphere Production, Release and Transport of Noble Gases in the Continental Crust Tracing Fluid Origin, Transport and Interaction in the Crust Noble Gases in Lakes and Ground Waters Noble Gases in Ocean Waters and Sediments Cosmic-Ray-Produced Noble Gases in Terrestrial Rocks: Dating Tools for Surface Processes K-Ar and Ar-Ar Dating (U-Th)/He Dating: Techniques, Calibrations, and Applications
Author: Geological Survey (U.S.)
Publisher:
Published: 1987
Total Pages: 864
ISBN-13:
DOWNLOAD EBOOKv. 1. Physiography, tectonics, and submarine geology ; Geology of the island of Hawaii ; Petrogenesis and volcanic gases -- v. 2. Structure ; Dynamics ; History of investigations of Hawaiian volcanism.
Author: E.C. Alexander Jr.
Publisher: Springer
Published: 1980-09-30
Total Pages: 242
ISBN-13: 9789027790446
DOWNLOAD EBOOKPhysical and chemical studies of the earth and planets along with their sur roundings are now developing very rapidly. As these studies are of essentially international character, many international conferences, symposia, seminars and workshops are held every year. To publish proceedings of these meetings is of course important for tracing development of various disciplines of earth and plane tary sciences though publishing is fast getting to be an expensive business. It is my pleasure to learn that the Center for Academic Publications Japan and the Japan Scientific Societies Press have agreed to undertake the publication of a series "Advances in Earth and Planetary Sciences" which should certainly become an important medium for conveying achievements of various meetings to the aca demic as well as non-academic scientific communities. It is planned to publish the series mostly on the basis of proceedings that appear in the Journal of Geomagnetism and Geoelectricity edited by the Society of Terrestrial Magnetism and Electricity of Japan, the Journal of Physics of the Earth by the Seismological Society of Japan and the Volcanological Society of Japan, and the Geochemical Journal by the Geochemical Society of Japan, although occasional volumes of the series will include independent proceedings. Selection of meetings, of which the proceedings will be included in the series, will be made by the Editorial Committee for which I have the honour to work as the General Editor.
Author: Minoru Ozima
Publisher: Cambridge University Press
Published: 2002
Total Pages: 302
ISBN-13: 0521803667
DOWNLOAD EBOOKPublisher Description
Author:
Publisher: ScholarlyEditions
Published: 2012-01-09
Total Pages: 189
ISBN-13: 1464924619
DOWNLOAD EBOOKNoble Gases: Advances in Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Noble Gases. The editors have built Noble Gases: Advances in Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Noble Gases in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Noble Gases: Advances in Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Author: Robin M. Canup
Publisher: University of Arizona Press
Published: 2000-11-01
Total Pages: 584
ISBN-13: 0816546568
DOWNLOAD EBOOKThe age-old question of how our home planet and its satellite originated has in recent times undergone a minor revolution. The emergence of the "giant impact theory" as the most successful model for the origin of the Moon has been difficult to reconcile with some aspects of the Earth, and the development of an integrated model for the origin of the Earth-Moon system has been difficult for this reason. However, recent technical advances in experimental and isotopic work, together with intensified interest in the modeling of planetary dynamics, have produced a wealth of new results requiring a rethinking of models for the origin of the Earth and Moon. This book is intended to serve as a resource for those scientists working closely in this field, while at the same time it provides enough balance and depth to offer an introduction for students or technically minded general readers. Its thirty chapters address isotopic and chemical constraints on accretion, the dynamics of terrestrial planet formation, the impact-triggered formation of the Earth-Moon system, differentiation of the Earth and Moon, the origin of terrestrial volatiles, and conditions on the young Earth and Moon. Covering such subjects as the history and origin of the Moon's orbit, water on the Earth, and the implications of Earth-Moon interactions for terrestrial climate and life, the book constitutes a state-of-the-art overview of the most recent investigations in the field. Although many advances have been made in our ability to evaluate competing models of the formation of the Earth-Moon system, there are still many gaps in our understanding. This book makes great strides toward closing those gaps by highlighting the extensive progress that has been made and pointing toward future research.
Author:
Publisher:
Published: 1985
Total Pages: 278
ISBN-13:
DOWNLOAD EBOOKAuthor: William M. White
Publisher: Springer
Published: 2018-07-24
Total Pages: 1680
ISBN-13: 9783319393117
DOWNLOAD EBOOKThe Encyclopedia is a complete and authoritative reference work for this rapidly evolving field. Over 200 international scientists, each experts in their specialties, have written over 330 separate topics on different aspects of geochemistry including geochemical thermodynamics and kinetics, isotope and organic geochemistry, meteorites and cosmochemistry, the carbon cycle and climate, trace elements, geochemistry of high and low temperature processes, and ore deposition, to name just a few. The geochemical behavior of the elements is described as is the state of the art in analytical geochemistry. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to the essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and citation indices are comprehensive and extensive. Geochemistry applies chemical techniques and approaches to understanding the Earth and how it works. It touches upon almost every aspect of earth science, ranging from applied topics such as the search for energy and mineral resources, environmental pollution, and climate change to more basic questions such as the Earth’s origin and composition, the origin and evolution of life, rock weathering and metamorphism, and the pattern of ocean and mantle circulation. Geochemistry allows us to assign absolute ages to events in Earth’s history, to trace the flow of ocean water both now and in the past, trace sediments into subduction zones and arc volcanoes, and trace petroleum to its source rock and ultimately the environment in which it formed. The earliest of evidence of life is chemical and isotopic traces, not fossils, preserved in rocks. Geochemistry has allowed us to unravel the history of the ice ages and thereby deduce their cause. Geochemistry allows us to determine the swings in Earth’s surface temperatures during the ice ages, determine the temperatures and pressures at which rocks have been metamorphosed, and the rates at which ancient magma chambers cooled and crystallized. The field has grown rapidly more sophisticated, in both analytical techniques that can determine elemental concentrations or isotope ratios with exquisite precision and in computational modeling on scales ranging from atomic to planetary.