Tensor Network Contractions

Tensor Network Contractions

Author: Shi-Ju Ran

Publisher: Springer Nature

Published: 2020-01-27

Total Pages: 160

ISBN-13: 3030344894

DOWNLOAD EBOOK

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.


Introduction to Tensor Network Methods

Introduction to Tensor Network Methods

Author: Simone Montangero

Publisher: Springer

Published: 2018-11-28

Total Pages: 172

ISBN-13: 3030014096

DOWNLOAD EBOOK

This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.


Mathematics Of Autonomy: Mathematical Methods For Cyber-physical-cognitive Systems

Mathematics Of Autonomy: Mathematical Methods For Cyber-physical-cognitive Systems

Author: Vladimir G Ivancevic

Publisher: World Scientific

Published: 2017-10-30

Total Pages: 432

ISBN-13: 9813230401

DOWNLOAD EBOOK

Mathematics of Autonomy provides solid mathematical foundations for building useful Autonomous Systems. It clarifies what makes a system autonomous rather than simply automated, and reveals the inherent limitations of systems currently incorrectly labeled as autonomous in reference to the specific and strong uncertainty that characterizes the environments they operate in. Such complex real-world environments demand truly autonomous solutions to provide the flexibility and robustness needed to operate well within them.This volume embraces hybrid solutions to demonstrate extending the classes of uncertainty autonomous systems can handle. In particular, it combines physical-autonomy (robots), cyber-autonomy (agents) and cognitive-autonomy (cyber and embodied cognition) to produce a rigorous subset of trusted autonomy: Cyber-Physical-Cognitive autonomy (CPC-autonomy).The body of the book alternates between underlying theory and applications of CPC-autonomy including 'Autonomous Supervision of a Swarm of Robots' , 'Using Wind Turbulence against a Swarm of UAVs' and 'Unique Super-Dynamics for All Kinds of Robots (UAVs, UGVs, UUVs and USVs)' to illustrate how to effectively construct Autonomous Systems using this model. It avoids the wishful thinking that characterizes much discussion related to autonomy, discussing the hard limits and challenges of real autonomous systems. In so doing, it clarifies where more work is needed, and also provides a rigorous set of tools to tackle some of the problem space.


Artificial Intelligence in Intelligent Systems

Artificial Intelligence in Intelligent Systems

Author: Radek Silhavy

Publisher: Springer Nature

Published: 2021-07-15

Total Pages: 779

ISBN-13: 3030774457

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the artificial intelligence in intelligent systems section of the 10th Computer Science Online Conference 2021 (CSOC 2021), held online in April 2021. Artificial intelligence in intelligent systems topics are presented in this book. Modern hybrid and bio-inspired algorithms and their application are discussed in selected papers.


Deep Learning and Physics

Deep Learning and Physics

Author: Akinori Tanaka

Publisher: Springer Nature

Published: 2021-03-24

Total Pages: 207

ISBN-13: 9813361085

DOWNLOAD EBOOK

What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.


Physics Of Quantum Information, The - Proceedings Of The 28th Solvay Conference On Physics

Physics Of Quantum Information, The - Proceedings Of The 28th Solvay Conference On Physics

Author: David J Gross

Publisher: World Scientific

Published: 2023-03-16

Total Pages: 346

ISBN-13: 981127486X

DOWNLOAD EBOOK

Ever since 1911, the Solvay Conferences have shaped modern physics. The format is quite different from other conferences as the emphasis is placed on discussion. The 28th edition held in May 2022 in Brussels and chaired by David Gross and Peter Zoller continued this tradition and addressed some of the most pressing open questions in the fields of quantum information, gathering many of the leading figures working on a wide variety of profound problems.The proceedings contain the 'rapporteur talks' giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions: The Physics of Quantum Information, Many-Body Entanglement, Quantum Information and Spacetime, Quantum Platforms, Quantum Algorithms.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants — expert, yet lively and sometimes contentious — have been edited to retain their flavor and are reproduced in full. The reader is taken on a breathtaking ride through a fascinating field which is expanding rapidly.


An Introduction to Neural Network Methods for Differential Equations

An Introduction to Neural Network Methods for Differential Equations

Author: Neha Yadav

Publisher: Springer

Published: 2015-02-26

Total Pages: 124

ISBN-13: 9401798168

DOWNLOAD EBOOK

This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.


Intelligent Systems and Applications

Intelligent Systems and Applications

Author: Kohei Arai

Publisher: Springer Nature

Published: 2020-08-25

Total Pages: 815

ISBN-13: 3030551806

DOWNLOAD EBOOK

The book Intelligent Systems and Applications - Proceedings of the 2020 Intelligent Systems Conference is a remarkable collection of chapters covering a wider range of topics in areas of intelligent systems and artificial intelligence and their applications to the real world. The Conference attracted a total of 545 submissions from many academic pioneering researchers, scientists, industrial engineers, students from all around the world. These submissions underwent a double-blind peer review process. Of those 545 submissions, 177 submissions have been selected to be included in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have enabled a larger number of problems to be tackled more effectively.This branching out of computational intelligence in several directions and use of intelligent systems in everyday applications have created the need for such an international conference which serves as a venue to report on up-to-the-minute innovations and developments. This book collects both theory and application based chapters on all aspects of artificial intelligence, from classical to intelligent scope. We hope that readers find the volume interesting and valuable; it provides the state of the art intelligent methods and techniques for solving real world problems along with a vision of the future research.


Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI

Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI

Author: Jeffrey Nichols

Publisher: Springer Nature

Published: 2020-12-22

Total Pages: 555

ISBN-13: 3030633934

DOWNLOAD EBOOK

This book constitutes the revised selected papers of the 17th Smoky Mountains Computational Sciences and Engineering Conference, SMC 2020, held in Oak Ridge, TN, USA*, in August 2020. The 36 full papers and 1 short paper presented were carefully reviewed and selected from a total of 94 submissions. The papers are organized in topical sections of computational applications: converged HPC and artificial intelligence; system software: data infrastructure and life cycle; experimental/observational applications: use cases that drive requirements for AI and HPC convergence; deploying computation: on the road to a converged ecosystem; scientific data challenges. *The conference was held virtually due to the COVID-19 pandemic.


Machine Learning Meets Quantum Physics

Machine Learning Meets Quantum Physics

Author: Kristof T. Schütt

Publisher: Springer Nature

Published: 2020-06-03

Total Pages: 473

ISBN-13: 3030402452

DOWNLOAD EBOOK

Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.