Tensor Algebra and Tensor Analysis for Engineers

Tensor Algebra and Tensor Analysis for Engineers

Author: Mikhail Itskov

Publisher: Springer Science & Business Media

Published: 2009-04-30

Total Pages: 253

ISBN-13: 3540939075

DOWNLOAD EBOOK

There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.


Tensor Algebra and Tensor Analysis for Engineers

Tensor Algebra and Tensor Analysis for Engineers

Author: Mikhail Itskov

Publisher: Springer Science & Business Media

Published: 2012-08-13

Total Pages: 279

ISBN-13: 3642308791

DOWNLOAD EBOOK

There is a large gap between the engineering course in tensor algebra on the one hand and the treatment of linear transformations within classical linear algebra on the other hand. The aim of this modern textbook is to bridge this gap by means of the consequent and fundamental exposition. The book primarily addresses engineering students with some initial knowledge of matrix algebra. Thereby the mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises are provided in the book and are accompanied by solutions, enabling self-study. The last chapters of the book deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and are therefore of high interest for PhD-students and scientists working in this area. This third edition is completed by a number of additional figures, examples and exercises. The text and formulae have been revised and improved where necessary.


Vector and Tensor Analysis with Applications

Vector and Tensor Analysis with Applications

Author: A. I. Borisenko

Publisher: Courier Corporation

Published: 2012-08-28

Total Pages: 292

ISBN-13: 0486131904

DOWNLOAD EBOOK

Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.


Tensor Analysis and Nonlinear Tensor Functions

Tensor Analysis and Nonlinear Tensor Functions

Author: Yuriy I. Dimitrienko

Publisher: Springer Science & Business Media

Published: 2002-11-30

Total Pages: 690

ISBN-13: 9781402010156

DOWNLOAD EBOOK

Tensor Analysis and Nonlinear Tensor Functions embraces the basic fields of tensor calculus: tensor algebra, tensor analysis, tensor description of curves and surfaces, tensor integral calculus, the basis of tensor calculus in Riemannian spaces and affinely connected spaces, - which are used in mechanics and electrodynamics of continua, crystallophysics, quantum chemistry etc. The book suggests a new approach to definition of a tensor in space R3, which allows us to show a geometric representation of a tensor and operations on tensors. Based on this approach, the author gives a mathematically rigorous definition of a tensor as an individual object in arbitrary linear, Riemannian and other spaces for the first time. It is the first book to present a systematized theory of tensor invariants, a theory of nonlinear anisotropic tensor functions and a theory of indifferent tensors describing the physical properties of continua. The book will be useful for students and postgraduates of mathematical, mechanical engineering and physical departments of universities and also for investigators and academic scientists working in continuum mechanics, solid physics, general relativity, crystallophysics, quantum chemistry of solids and material science.


Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers

Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers

Author: Hung Nguyen-Schäfer

Publisher: Springer

Published: 2016-08-16

Total Pages: 389

ISBN-13: 3662484978

DOWNLOAD EBOOK

This book presents tensors and differential geometry in a comprehensive and approachable manner, providing a bridge from the place where physics and engineering mathematics end, and the place where tensor analysis begins. Among the topics examined are tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. The book includes numerous examples with solutions and concrete calculations, which guide readers through these complex topics step by step. Mindful of the practical needs of engineers and physicists, book favors simplicity over a more rigorous, formal approach. The book shows readers how to work with tensors and differential geometry and how to apply them to modeling the physical and engineering world. The authors provide chapter-length treatment of topics at the intersection of advanced mathematics, and physics and engineering: • General Basis and Bra-Ket Notation • Tensor Analysis • Elementary Differential Geometry • Differential Forms • Applications of Tensors and Differential Geometry • Tensors and Bra-Ket Notation in Quantum Mechanics The text reviews methods and applications in computational fluid dynamics; continuum mechanics; electrodynamics in special relativity; cosmology in the Minkowski four-dimensional space time; and relativistic and non-relativistic quantum mechanics. Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers benefits research scientists and practicing engineers in a variety of fields, who use tensor analysis and differential geometry in the context of applied physics, and electrical and mechanical engineering. It will also interest graduate students in applied physics and engineering.


A Brief on Tensor Analysis

A Brief on Tensor Analysis

Author: James G. Simmonds

Publisher: Springer Science & Business Media

Published: 2012-10-31

Total Pages: 124

ISBN-13: 1441985220

DOWNLOAD EBOOK

In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.


Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds

Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds

Author: Uwe Mühlich

Publisher: Springer

Published: 2017-04-18

Total Pages: 134

ISBN-13: 3319562649

DOWNLOAD EBOOK

This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.


Tensor Analysis and Continuum Mechanics

Tensor Analysis and Continuum Mechanics

Author: Wilhelm Flügge

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 215

ISBN-13: 3642883826

DOWNLOAD EBOOK

Through several centuries there has been a lively interaction between mathematics and mechanics. On the one side, mechanics has used mathemat ics to formulate the basic laws and to apply them to a host of problems that call for the quantitative prediction of the consequences of some action. On the other side, the needs of mechanics have stimulated the development of mathematical concepts. Differential calculus grew out of the needs of Newtonian dynamics; vector algebra was developed as a means . to describe force systems; vector analysis, to study velocity fields and force fields; and the calcul~s of variations has evolved from the energy principles of mechan ics. In recent times the theory of tensors has attracted the attention of the mechanics people. Its very name indicates its origin in the theory of elasticity. For a long time little use has been made of it in this area, but in the last decade its usefulness in the mechanics of continuous media has been widely recognized. While the undergraduate textbook literature in this country was becoming "vectorized" (lagging almost half a century behind the development in Europe), books dealing with various aspects of continuum mechanics took to tensors like fish to water. Since many authors were not sure whether their readers were sufficiently familiar with tensors~ they either added' a chapter on tensors or wrote a separate book on the subject.


Math Refresher for Scientists and Engineers

Math Refresher for Scientists and Engineers

Author: John R. Fanchi

Publisher: John Wiley & Sons

Published: 2006-06-12

Total Pages: 361

ISBN-13: 0471791547

DOWNLOAD EBOOK

Expanded coverage of essential math, including integral equations, calculus of variations, tensor analysis, and special integrals Math Refresher for Scientists and Engineers, Third Edition is specifically designed as a self-study guide to help busy professionals and students in science and engineering quickly refresh and improve the math skills needed to perform their jobs and advance their careers. The book focuses on practical applications and exercises that readers are likely to face in their professional environments. All the basic math skills needed to manage contemporary technology problems are addressed and presented in a clear, lucid style that readers familiar with previous editions have come to appreciate and value. The book begins with basic concepts in college algebra and trigonometry, and then moves on to explore more advanced concepts in calculus, linear algebra (including matrices), differential equations, probability, and statistics. This Third Edition has been greatly expanded to reflect the needs of today's professionals. New material includes: * A chapter on integral equations * A chapter on calculus of variations * A chapter on tensor analysis * A section on time series * A section on partial fractions * Many new exercises and solutions Collectively, the chapters teach most of the basic math skills needed by scientists and engineers. The wide range of topics covered in one title is unique. All chapters provide a review of important principles and methods. Examples, exercises, and applications are used liberally throughout to engage the readers and assist them in applying their new math skills to actual problems. Solutions to exercises are provided in an appendix. Whether to brush up on professional skills or prepare for exams, readers will find this self-study guide enables them to quickly master the math they need. It can additionally be used as a textbook for advanced-level undergraduates in physics and engineering.


Tensor Calculus

Tensor Calculus

Author: J. L. Synge

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 340

ISBN-13: 048614139X

DOWNLOAD EBOOK

Fundamental introduction of absolute differential calculus and for those interested in applications of tensor calculus to mathematical physics and engineering. Topics include spaces and tensors; basic operations in Riemannian space, curvature of space, more.