This volume discusses some of the main achievements and perspectives of nuclear structure physics for both experiment and theory. The main themes are: spectroscopy of exotic nuclei; from nucleon-nucleon interaction to nuclear structure; recent developments in the study of collective excitations; nuclear structure physics in other research fields.
This volume contains the lectures of invited speakers on the following topics: Collective excitations at zero and finite temperature; Algebraic and geometric symmetric nuclear models; Fundamental symmetries in nuclear physics; Fast rotating nuclei; Nuclei far from stability; Nuclear multifragmentation; Nuclear astrophysics; Subnucleonic degrees of freedom; Relativistic effects in nuclear physics; Quark-gluon plasma physics; Order and chaos in nuclear physics; Nuclear physics and atomic aggregates; Applied nuclear physics.
The series of volumes, Contemporary Concepts in Physics, is addressed to the professional physicist and to the serious graduate student of physics. The subject of many-body systems constitutes a central chapter in the study of quantum mechanics, with applications ranging from elementary particle and condensed matter physics to the behaviour of compact stellar objects. Quantal size effects is one of the most fascinating facets of many-body physics; this is testified to by the developments taking place in the study of metallic clusters, fullerenes, nanophase materials, and atomic nuclei. This book is divided into two main parts: the study of giant resonances based on the atomic nucleus ground state (zero temperature), and the study of the y-decay of giant resonances from compound (finite temperature) nuclei.
Giant resonances are collective excitations of the atomic nucleus, a typical quantum many-body system. The study of these fundamental modes has in many respects contributed to our understanding of the bulk behavior of the nucleus and of the dynamics of non-equilibrium excitations. Although the phenomenon of giant resonances has been known for more than 50 years, a large amount of information has been obtained in the last 10 years. This book gives an up-to-date, comprehensive account of our present knowledge of giant resonances. It presents the experimental facts and the techniques used to obtain that information, describes how these facts fit into theoretical concepts and how this allows to determine various nuclear properties which are otherwise difficult to obtain. Included as an introduction is an overview of the main facts, a short history of how the field has developed in the course of time, and a discussion of future perspectives.
The Second International Conference on Atomic and Nuclear Clusters '93 was orga nized in a joint effort by the 'Demokritos' National Center for Scientific Research, G. S. Anagnostatos (representing the atomic physics) and the Hahn-Meitner-Institut, W. von Oertzen (representing the nuclear physics). The subject of clusters - small aggregates of particles - is a topic of primary interest in both atomic and nuclear physics, and also in other fields like in the case of quark-structure of baryons and in cosmology. The interplay between atomic and nuclear physics is a particularly fascinating one because many concepts are common to both fields (quantal effects, shells, geometric structures, collective modes, fission etc. ) This conference was the second after the first one organized by Professor M. Brenner in Abo (Finland) in 1991. The general atmosphere of a joint forum for atomic and nuclear physicists was very fruitful and thus the decision to have a sequence of such meetings has been taken. A third one is planned in St. Petersburg (Russia) with Professor K. Gridnev (St. Petersburg) and Mme. Professor C. Bnkhignac (Orsay) as Chairpersons. The conference site, Fin\. on Santorini island (Greece), was a wonderful choice for a conference. It is small, which helps to keep people concentrated in a smaller community, it has a perfect convention center, the P. Nomikos Conference Center, and a very beautiful landscape formed by a large volcanic crater.
This book covers recent topics on studies of heavy ion collisions in the energy domain from several MeV/nucleon to several GeV/nucleon: exotic nuclei and radiactive beams; hot nuclei; hot and cold giant resonances; high spin and some applications; and panel for future collaboration.