This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science. • Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners • Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization • Maximizes readership by combining fundamental science and application development
This report is the result of a three-year research program. It describes the chemical character of cellulose ethers as a general class of polymers and establishes an approximate ranking of the relative stability of each generic chemical subclass. Ranking the thermal stability of the polymers with respect to color change and loss in degree of polymerization led to the conclusion that as generic chemical classes, methylcellulose and carboxymethylcellulose appear to be the most stable of the cellulose ethers. Water-soluble ethylhydroxyethylcellulose apparently also possesses good stability. Of questionable long-term stability are hydroxyethylcellulose and hydroxy- propylcellulose. Ethylcellulose and organic-soluble ethylhydroxyethylcellulose proved to be of poor stability, potentially undergoing marked changes in twenty years or less under normal museum conditions. An important additional conclusion reached here, as well as in an earlier investigation, is that considerable variations in stability can occur within a generic chemical class from differences in the basic raw material, a natural product from plants, which is not a uniform, manufactured, chemical substance. Further variations can exist due to different manufacturing processes or commercial sources. Hence, commercial products must be evaluated individually to determine the most stable of a given generic type. Nonetheless, the authors believe the conclusions expressed here to be valid with regard to the relative stability of the generic chemical classes of cellulose ethers.
This book summarizes recent progress in cellulose chemistry. The last 10 years have witnessed important developments, because sustainability is a major concern. Biodegradable cellulose derivatives, in particular esters and ethers, are employed on a large scale. The recent developments in cellulose chemistry include unconventional methods for the synthesis of derivatives, introduction of novel solvents, e.g. ionic liquids, novel approaches to regioselective derivatization of cellulose, preparation of nano-particles and nano-composites for specific applications. These new developments are discussed comprehensively. This book is aimed at researchers and professionals working on cellulose and its derivatives. It fills an important gap in teaching, because most organic chemistry textbooks concentrate on the relatively simple chemistry of mono- and disaccharides. The chemistry and, more importantly, the applications of cellulose are only concisely mentioned.
Cellulose and its derivatives can be found in many forms in nature and is a valuable material for all manner of applications in industry. This book is authored by an expert with many years of experience as an application engineer at renowned cellulose processing companies in the food industry. All the conventional and latest knowledge available on cellulose and its derivatives is presented. The necessary details are elucidated from a theoretical and practical viewpoint, while retaining the focus on food applications. This book is an essential source of information and includes recommendations and instructions of a general nature to assist readers in the exploration of possible applications of cellulose and its derivatives, as well as providing food for thought for the generation of new ideas for product development. Topics include gelling and rheological properties, synergistic effects with other hydrocolloids, as well as nutritional and legal aspects. The resulting compilation covers all the information and advice needed for the successful development, implementation, and handling of cellulose-containing products.
This report attempts to isolate and separately examine each of the factors known to lead to cellulose nitrate decomposition, and then relate their contribution to the instability of the polymer when it is used as a bonding agent for ceramics and as a lacquer for metal objects. These factors include deterioration caused by heat, radiation, or acid impurities, or through the loss of plasticizer. There is, moreover, decomposition caused autocatalytically by the initial breakdown products. In particular, the publication examines new information on chemical changes under ambient conditions that has been developed recently through advances in analytical procedures such as chemiluminescence, X-ray scanning spectroscopy (ESCA), and more sophisticated viscometry. This new information will be added to the large body of data, collected over the past 150 years, on the instability of cellulose nitrate under more severe conditions.
This valuable reference bridges the widening gap between the knowledge about the use of polymers in the cosmetics industry and the greater understanding of polymeric behaviour necessary for continuing research and development. Providing both a solid grounding in polymer science for novices to the field and fresh insights for experienced researchers, 'Principles of Polymer Science and Technology in Cosmetics and Personal Care' introduces fundamentals of polymers, including their classification, molecular weight definitions, thermodynamics, rheology and properties in the solid and semi-solid state.
Science and Technology of Concrete Admixtures presents admixtures from both a theoretical and practical point-of-view. The authors emphasize key concepts that can be used to better understand the working mechanisms of these products by presenting a concise overview on the fundamental behavior of Portland cement and hydraulic binders as well as their chemical admixtures, also discussing recent effects in concrete in terms of rheology, mechanics, durability, and sustainability, but never forgetting the fundamental role played by the water/binder ratio and proper curing in concrete technology. Part One presents basic knowledge on Portland cement and concrete, while Part Two deals with the chemical and physical background needed to better understand what admixtures are chemically, and through which mechanism they modify the properties of the fresh and hardened concrete. Subsequent sections present discussions on admixtures technology and two particular types of concrete, self-consolidating and ultra-high strength concretes, with final remarks on their future. - Combines the knowledge of two leading authors to present both the scientific and technology of admixtures - Explains what admixtures are from a chemical point-of-view and illustrates by which mechanisms they modify the properties of fresh and hardened concrete - Presents a fundamental, practical, and innovative reference book on the topic - Contains three detailed appendices that can be used to learn how to use admixtures more efficiently
Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, Second Edition gives extensive information on the microorganisms involved in the biodegradation of materials, along with the biocides which are permitted for use according to the most up-to-date worldwide legislation. Mechanisms of biodegradation and biodeterioration, results of biodeterioration, and methods of biostabilization are covered for a large number of products, making the title relevant for a range of industries and applications, including construction, coatings/paints, medical and pharmaceutical applications, and electronics. In addition, the health and safety aspects of biocide application are covered in detail, as well as the personal protection of practitioners who are required to use them. The contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry. - Enables practitioners to identify the organisms responsible for biodeterioration in materials, select suitable preventative measures, and safely deploy methods of biostabilization - Contains information on the biostabilization of various industrial products, including 24 groups of polymers - Includes critical (and current) health and safety, environmental, and regulatory guidelines and best practices, and their relationships to legislation, regulation, toxicity, micro-organisms, biocides, and polymers - Essential reading for scientists and practitioners as new regulations eliminate the use of previously used materials - Contains up-to-date information on legislation and regulations governing the use of biocides in the European Union, the United States, and worldwide