Silicon

Silicon

Author: Paul Siffert

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 552

ISBN-13: 3662098970

DOWNLOAD EBOOK

With topics ranging from epitaxy through lattice defects and doping to quantum computation, this book provides a personalized survey of the development and use of silicon, the basis for the revolutionary changes in our lives sometimes called "The Silicon Age." Beginning with the very first developments more than 50 years ago, this reports on all aspects of silicon and silicon technology up to its use in exciting new technologies, including a glance at possible future developments.


Silicon Nanoelectronics

Silicon Nanoelectronics

Author: Shunri Oda

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 561

ISBN-13: 1351836749

DOWNLOAD EBOOK

Technological advancement in chip development, primarily based on the downscaling of the feature size of transistors, is threatening to come to a standstill as we approach the limits of conventional scaling. For example, when the number of electrons in a device's active region is reduced to less than ten electrons (or holes), quantum fluctuation errors will occur, and when gate insulator thickness becomes too insignificant to block quantum mechanical tunneling, unacceptable leakage will occur. Fortunately, there is truth in the old adage that whenever a door closes, a window opens somewhere else. In this case, that window opening is nanotechnology. Silicon Nanoelectronics takes a look at at the recent development of novel devices and materials that hold great promise for the creation of still smaller and more powerful chips. Silicon nanodevices are positoned to be particularly relevant in consideration of the existing silicon process infrastructure already in place throughout the semiconductor industry and silicon's consequent compatibility with current CMOS circuits. This is reinforced by the nearly perfect interface that can exist between natural oxide and silicon. Presenting the contributions of more than 20 leading academic and corporate researchers from the United States and Japan, Silicon Nanoelectronics offers a comprehensive look at this emergent technology. The text includes extensive background information on the physics of silicon nanodevices and practical CMOS scaling. It considers such issues as quantum effects and ballistic transport and resonant tunneling in silicon nanotechnology. A significant amount of attention is given to the all-important silicon single electron transistors and the devices that utilize them. In offering an update of the current state-of-the-art in the field of silicon nanoelectronics, this volume serves well as a concise reference for students, scientists, engineers, and specialists in various fields, in


Nano-Semiconductors

Nano-Semiconductors

Author: Krzysztof Iniewski

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 600

ISBN-13: 143984836X

DOWNLOAD EBOOK

With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry’s transition from standard CMOS silicon to novel device structures—including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials—this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution from micro- to nanoelectronics. The book is divided into three parts that address: Semiconductor materials (i.e., carbon nanotubes, memristors, and spin organic devices) Silicon devices and technology (i.e., BiCMOS, SOI, various 3D integration and RAM technologies, and solar cells) Compound semiconductor devices and technology This reference explores the groundbreaking opportunities in emerging materials that will take system performance beyond the capabilities of traditional CMOS-based microelectronics. Contributors cover topics ranging from electrical propagation on CNT to GaN HEMTs technology and applications. Approaching the trillion-dollar nanotech industry from the perspective of real market needs and the repercussions of technological barriers, this resource provides vital information about elemental device architecture alternatives that will lead to massive strides in future development.


Introduction to Nanoelectronics

Introduction to Nanoelectronics

Author: Vladimir V. Mitin

Publisher: Cambridge University Press

Published: 2008

Total Pages: 346

ISBN-13: 0521881722

DOWNLOAD EBOOK

A comprehensive textbook on nanoelectronics covering the underlying physics, nanostructures, nanomaterials and nanodevices.


Technology Evolution for Silicon Nano-Electronics

Technology Evolution for Silicon Nano-Electronics

Author: Seiichi Miyazaki

Publisher: Trans Tech Publications Ltd

Published: 2011-02-21

Total Pages: 245

ISBN-13: 3038134945

DOWNLOAD EBOOK

Selected, peer reviewed papers from the proceedings of the International Symposium on Technology Evolution for Silicon Nano-Electronics 2010, June 3-5, 2010, Tokyo Institute of Technology, Tokyo, Japan


Advanced Nanoelectronics

Advanced Nanoelectronics

Author: Razali Ismail

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 459

ISBN-13: 1351833073

DOWNLOAD EBOOK

While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.


Nanoelectronics

Nanoelectronics

Author: Robert Puers

Publisher: John Wiley & Sons

Published: 2017-06-19

Total Pages: 694

ISBN-13: 352734053X

DOWNLOAD EBOOK

Offering first-hand insights by top scientists and industry experts at the forefront of R&D into nanoelectronics, this book neatly links the underlying technological principles with present and future applications. A brief introduction is followed by an overview of present and emerging logic devices, memories and power technologies. Specific chapters are dedicated to the enabling factors, such as new materials, characterization techniques, smart manufacturing and advanced circuit design. The second part of the book provides detailed coverage of the current state and showcases real future applications in a wide range of fields: safety, transport, medicine, environment, manufacturing, and social life, including an analysis of emerging trends in the internet of things and cyber-physical systems. A survey of main economic factors and trends concludes the book. Highlighting the importance of nanoelectronics in the core fields of communication and information technology, this is essential reading for materials scientists, electronics and electrical engineers, as well as those working in the semiconductor and sensor industries.


ULSI Process Integration 6

ULSI Process Integration 6

Author: C. Claeys

Publisher: The Electrochemical Society

Published: 2009-09

Total Pages: 547

ISBN-13: 1566777445

DOWNLOAD EBOOK

ULSI Process Integration 6 covers all aspects of process integration. Sections are devoted to 1) Device Technologies, 2) Front-end-of-line integration (gate stacks, shallow junctions, dry etching, etc.), 3) Back-end-of-line integration (CMP, low-k, Cu interconnect, air-gaps, 3D packaging, etc.), 4) Alternative channel technologies (Ge, III-V, hybrid integration), and 5) Emerging technologies (CNT, graphene, polymer electronics, nanotubes).


Microelectronics to Nanoelectronics

Microelectronics to Nanoelectronics

Author: Anupama B. Kaul

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 464

ISBN-13: 1466509554

DOWNLOAD EBOOK

Composed of contributions from top experts, Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability offers a detailed overview of important recent scientific and technological developments in the rapidly evolving nanoelectronics arena. Under the editorial guidance and technical expertise of noted materials scientist Anupama B. Kaul of California Institute of Technology’s Jet Propulsion Lab, this book captures the ascent of microelectronics into the nanoscale realm. It addresses a wide variety of important scientific and technological issues in nanoelectronics research and development. The book also showcases some key application areas of micro-electro-mechanical-systems (MEMS) that have reached the commercial realm. Capitalizing on Dr. Kaul’s considerable technical experience with micro- and nanotechnologies and her extensive research in prestigious academic and industrial labs, the book offers a fresh perspective on application-driven research in micro- and nanoelectronics, including MEMS. Chapters explore how rapid developments in this area are transitioning from the lab to the market, where new and exciting materials, devices, and manufacturing technologies are revolutionizing the electronics industry. Although many micro- and nanotechnologies still face major scientific and technological challenges and remain within the realm of academic research labs, rapid advances in this area have led to the recent emergence of new applications and markets. This handbook encapsulates that exciting recent progress by providing high-quality content contributed by international experts from academia, leading industrial institutions—such as Hewlett-Packard—and government laboratories including the U.S. Department of Energy’s Sandia National Laboratory. Offering something for everyone, from students to scientists to entrepreneurs, this book showcases the broad spectrum of cutting-edge technologies that show significant promise for electronics and related applications in which nanotechnology plays a key role.