This powerful new book is brain food for all those who care deeply about science and students, including teachers, science educators, curriculum specialists, and policy makers. The collection of 21 provocative essays gives you a fresh look at today's most pressing public policy concerns in science education, from how students learn science to building science partnerships to the ramifications of the No Child Left Behind legislation.
What should citizens know, value, and be able to do in preparation for life and work in the 21st century? In The Teaching of Science: 21st-Century Perspectives, renowned educator Rodger Bybee provides the perfect opportunity for science teachers, administrators, curriculum developers, and science teacher educators to reflect on this question. He encourages readers to think about why they teach science and what is important to teach.
An emerging body of research suggests that a set of broad "21st century skills"-such as adaptability, complex communication skills, and the ability to solve non-routine problems-are valuable across a wide range of jobs in the national economy. However, the role of K-12 education in helping students learn these skills is a subject of current debate. Some business and education groups have advocated infusing 21st century skills into the school curriculum, and several states have launched such efforts. Other observers argue that focusing on skills detracts attention from learning of important content knowledge. To explore these issues, the National Research Council conducted a workshop, summarized in this volume, on science education as a context for development of 21st century skills. Science is seen as a promising context because it is not only a body of accepted knowledge, but also involves processes that lead to this knowledge. Engaging students in scientific processes-including talk and argument, modeling and representation, and learning from investigations-builds science proficiency. At the same time, this engagement may develop 21st century skills. Exploring the Intersection of Science Education and 21st Century Skills addresses key questions about the overlap between 21st century skills and scientific content and knowledge; explores promising models or approaches for teaching these abilities; and reviews the evidence about the transferability of these skills to real workplace applications.
Teaching and Learning in the 21st Century: Embracing the Fourth Industrial Revolution explores responsive and innovative pedagogies arising from findings of research and practitioner experiences, globally. This book clarifies concepts and issues that surround teaching and learning for the 21st century.
This book reflects on science education in the first 20 years of the 21st century in order to promote academic dialogue on science education from various standpoints, and highlights emergent new issues, such as education in science education research. It also defines new research agendas that should be “moved forward” and inform new trajectories through the rest of the century. Featuring 21 thematically grouped chapters, it includes award-winning papers and other significant papers that address the theme of the 2018 International Science Education Conference.
The mission of the book series, Research in Science Education, is to provide a comprehensive view of current and emerging knowledge, research strategies, and policy in specific professional fields of science education. This series would present currently unavailable, or difficult to gather, materials from a variety of viewpoints and sources in a usable and organized format. Each volume in the series would present a juried, scholarly, and accessible review of research, theory, and/or policy in a specific field of science education, K-16. Topics covered in each volume would be determined by present issues and trends, as well as generative themes related to current research and theory. Published volumes will include empirical studies, policy analysis, literature reviews, and positing of theoretical and conceptual bases.
Compatible with other professional development programs, this model shows how to apply relevant research from educational and cognitive neuroscience to classroom settings through a pedagogical framework. The model's six components are: 1) Establish the emotional connection to learning; 2) Develop the physical learning environment; 3) Design the learning experience; 4) Teach for the mastery of content, skills, and concepts; 5) Teach for the extension and application of knowledge; 6) Evaluate learning. --Book cover.
"This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--
This second volume of papers from the ATC21STM project deals with the development of an assessment and teaching system of 21st century skills. Readers are guided through a detailed description of the methods used in this process. The first volume was published by Springer in 2012 (Griffin, P., McGaw, B. & Care, E., Eds., Assessment and Teaching of 21st Century Skills, Dordrecht: Springer). The major elements of this new volume are the identification and description of two 21st century skills that are amenable to teaching and learning: collaborative problem solving, and learning in digital networks. Features of the skills that need to be mirrored in their assessment are identified so that they can be reflected in assessment tasks. The tasks are formulated so that reporting of student performance can guide implementation in the classroom for use in teaching and learning. How simple tasks can act as platforms for development of 21st century skills is demonstrated, with the concurrent technical infrastructure required for its support. How countries with different languages and cultures participated and contributed to the development process is described. The psychometric qualities of the online tasks developed are reported, in the context of the robustness of the automated scoring processes. Finally, technical and educational issues to be resolved in global projects of this nature are outlined.
What counterintuitive lessons can we learn from the meteoric rise of Mindset Theory in education? Why have computers so overwhelmingly failed to become the academic panacea many expected them to be? How can the simple act of assigning grades drive student narcissism and damage teacher professionalism? In this book, brain and behavioural research is combined with respected philosophy in order to place ten widely accepted yet rarely examined aspects of education under the microscope. - Teacher Expertise - Evidence-Based Practice - Grading - Homework - Mindset - 21st Century Skills - Computers - Rewards - Daily Organization - Function This book aims to inspire teachers, leaders, and parents to question many commonly held beliefs and empower them to re-think the role of modern schooling.