Tauberian Theory

Tauberian Theory

Author: Jacob Korevaar

Publisher: Springer Science & Business Media

Published: 2004-05-26

Total Pages: 512

ISBN-13: 9783540210580

DOWNLOAD EBOOK

This book traces the development of Tauberian theory, evoking the excitement surrounding the early results. The author describes the fascination of the difficult Hardy-Littlewood theorems, and offers a new unified theory for Borel and "circle" methods.


Tauberian Theory

Tauberian Theory

Author: Jacob Korevaar

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 497

ISBN-13: 3662102250

DOWNLOAD EBOOK

Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation", which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.


Tauberian Theorems for Generalized Functions

Tauberian Theorems for Generalized Functions

Author: V.S. Vladimirov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 9400928319

DOWNLOAD EBOOK

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. The Scandal of Father G. K. Chesterton. 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.


Advances in Summability and Approximation Theory

Advances in Summability and Approximation Theory

Author: S. A. Mohiuddine

Publisher: Springer

Published: 2018-12-30

Total Pages: 248

ISBN-13: 9811330778

DOWNLOAD EBOOK

This book discusses the Tauberian conditions under which convergence follows from statistical summability, various linear positive operators, Urysohn-type nonlinear Bernstein operators and also presents the use of Banach sequence spaces in the theory of infinite systems of differential equations. It also includes the generalization of linear positive operators in post-quantum calculus, which is one of the currently active areas of research in approximation theory. Presenting original papers by internationally recognized authors, the book is of interest to a wide range of mathematicians whose research areas include summability and approximation theory. One of the most active areas of research in summability theory is the concept of statistical convergence, which is a generalization of the familiar and widely investigated concept of convergence of real and complex sequences, and it has been used in Fourier analysis, probability theory, approximation theory and in other branches of mathematics. The theory of approximation deals with how functions can best be approximated with simpler functions. In the study of approximation of functions by linear positive operators, Bernstein polynomials play a highly significant role due to their simple and useful structure. And, during the last few decades, different types of research have been dedicated to improving the rate of convergence and decreasing the error of approximation.


Multiplicative Number Theory I

Multiplicative Number Theory I

Author: Hugh L. Montgomery

Publisher: Cambridge University Press

Published: 2007

Total Pages: 574

ISBN-13: 9780521849036

DOWNLOAD EBOOK

A 2006 text based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State.


Introduction to Analytic Number Theory

Introduction to Analytic Number Theory

Author: A. G. Postnikov

Publisher: American Mathematical Soc.

Published: 1988-12-31

Total Pages: 332

ISBN-13: 0821813498

DOWNLOAD EBOOK

Aimed at a level between textbooks and the latest research monographs, this book is directed at researchers, teachers, and graduate students interested in number theory and its connections with other branches of science. Choosing to emphasize topics not sufficiently covered in the literature, the author has attempted to give as broad a picture as possible of the problems of analytic number theory.


Introduction to Analytic and Probabilistic Number Theory

Introduction to Analytic and Probabilistic Number Theory

Author: Gérald Tenenbaum

Publisher: American Mathematical Soc.

Published: 2015-07-16

Total Pages: 656

ISBN-13: 082189854X

DOWNLOAD EBOOK

This book provides a self contained, thorough introduction to the analytic and probabilistic methods of number theory. The prerequisites being reduced to classical contents of undergraduate courses, it offers to students and young researchers a systematic and consistent account on the subject. It is also a convenient tool for professional mathematicians, who may use it for basic references concerning many fundamental topics. Deliberately placing the methods before the results, the book will be of use beyond the particular material addressed directly. Each chapter is complemented with bibliographic notes, useful for descriptions of alternative viewpoints, and detailed exercises, often leading to research problems. This third edition of a text that has become classical offers a renewed and considerably enhanced content, being expanded by more than 50 percent. Important new developments are included, along with original points of view on many essential branches of arithmetic and an accurate perspective on up-to-date bibliography. The author has made important contributions to number theory and his mastery of the material is reflected in the exposition, which is lucid, elegant, and accurate. --Mathematical Reviews