Tau oligomers

Tau oligomers

Author: Jesus Avila

Publisher: Frontiers E-books

Published: 2014-08-18

Total Pages: 114

ISBN-13: 288919261X

DOWNLOAD EBOOK

Neurofibrillary tangles (NFTs) composed of intracellular aggregates of tau protein are a key neuropathological feature of Alzheimer’s Disease (AD) and other neurodegenerative diseases, collectively termed tauopathies. The abundance of NFTs has been reported to correlate positively with the severity of cognitive impairment in AD. However, accumulating evidences derived from studies of experimental models have identified that NFTs themselves may not be neurotoxic. Now, many of tau researchers are seeking a “toxic” form of tau protein. Moreover, it was suggested that a “toxic” tau was capable to seed aggregation of native tau protein and to propagate in a prion-like manner. However, the exact neurotoxic tau species remain unclear. Because mature tangles seem to be non-toxic component, “tau oligomers” as the candidate of “toxic” tau have been investigated for more than one decade. In this topic, we will discuss our consensus of “tau oligomers” because the term of “tau oligomers” [e.g. dimer (disulfide bond-dependent or independent), multimer (more than dimer), granular (definition by EM or AFM) and maybe small filamentous aggregates] has been used by each researchers definition. From a biochemical point of view, tau protein has several unique characteristics such as natively unfolded conformation, thermo-stability, acid-stability, and capability of post-translational modifications. Although tau protein research has been continued for a long time, we are still missing the mechanisms of NFT formation. It is unclear how the conversion is occurred from natively unfolded protein to abnormally mis-folded protein. It remains unknown how tau protein can be formed filaments [e.g. paired helical filament (PHF), straight filament and twisted filament] in cells albeit in vitro studies confirmed tau self-assembly by several inducing factors. Researchers are still debating whether tau oligomerization is primary event rather than tau phosphorylation in the tau pathogenesis. Inhibition of either tau phosphorylation or aggregation has been investigated for the prevention of tauopathies, however, it will make an irrelevant result if we don’t know an exact target of neurotoxicity. It is a time to have a consensus of definition, terminology and methodology for the identification of “tau oligomers”.


Tau Biology

Tau Biology

Author: Akihiko Takashima

Publisher: Springer Nature

Published: 2020-02-24

Total Pages: 405

ISBN-13: 9813293586

DOWNLOAD EBOOK

This book presents essential studies and cutting-edge research results on tau, which is attracting increasing interest as a target for the treatment of Alzheimer's disease. Tau is well known as a microtubule-associated protein that is predominantly localized in the axons of neurons. In various forms of brain disease, neuronal loss occurs, with deposition of hyperphosphorylated tau in the remaining neurons. Important questions remain regarding the way in which tau forms hyperphosphorylated and fibrillar deposits in neurons, and whether tau aggregation represents the toxic pathway leading to neuronal death. With the help of new technologies, researchers are now solving these long-standing questions. In this book, readers will find the latest expert knowledge on all aspects of tau biology, including the structure and role of the tau molecule, tau localization and function, the pathology, drivers, and markers of tauopathies, tau aggregation, and treatments targeting tau. Tau Biology will be an invaluable source of information and fresh ideas for those involved in the development of more effective therapies and for all who seek a better understanding of the biology of the aging brain.


Protein Misfolding Diseases

Protein Misfolding Diseases

Author: Marina Ramirez-Alvarado

Publisher: John Wiley & Sons

Published: 2010-12-01

Total Pages: 1311

ISBN-13: 1118031814

DOWNLOAD EBOOK

An increasingly aging population will add to the number of individuals suffering from amyloid. Protein Misfolding Diseases provides a systematic overview of the current and emerging therapies for these types of protein misfolding diseases, including Alzheimer's, Parkinson's, and Mad Cow. The book emphasizes therapeutics in an amyloid disease context to help students, faculty, scientific researchers, and doctors working with protein misfolding diseases bridge the gap between basic science and pharmaceutical applications to protein misfolding disease.


Amyloid Proteins

Amyloid Proteins

Author: Einar M. Sigurdsson

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 390

ISBN-13: 1592598749

DOWNLOAD EBOOK

A proven collection of readily reproducible techniques for studying amyloid proteins and their involvement in the etiology, pathogenesis, diagnosis, and therapy of amyloid diseases. The contributors provide methods for the preparation of amyloid and its precursors (oligomers and protofibrils), in vitro assays and analytical techniques for their study, and cell culture models and assays for the production of amyloid proteins. Additional chapters present readily reproducible techniques for amyloid extraction from tissue, its detection in vitro and in vivo, as well as nontransgenic methods for developing amyloid mouse models. The protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.


Neuroprotection in Alzheimer's Disease

Neuroprotection in Alzheimer's Disease

Author: Illana Gozes

Publisher: Academic Press

Published: 2016-12-30

Total Pages: 344

ISBN-13: 0128037121

DOWNLOAD EBOOK

Neuroprotection in Alzheimer's Disease offers a translational point-of-view from both basic and clinical standpoints, putting it on the cusp for further clinical development with its emphasis on nerve cell protection, including the accumulation of knowledge from failed clinical trials and new advances in disease management. This book brings together the latest findings, both basic, and clinical, under the same cover, making it easy for the reader to obtain a complete overview of the state-of-the-field and beyond. Alzheimer's disease is the most common form of dementia, accounting for 60 to 80 percent of dementia cases. It is a progressive brain disease that slowly destroys memory, thinking skills, and eventually, even the ability to carry out the simplest tasks. It is characterized by death of synapses coupled to death nerve cells and brain degeneration which is manifested by loss of cognitive abilities. Understanding neuroprotection in Alzheimer's disease will pave the path to better disease management and novel therapeutics. - Comprehensive reference detailing neuroprotection in Alzheimer's Disease, with details on nerve cell protection and new advances in disease management - Combines the knowledge and points-of-view of both medical doctors and basic scientists, putting the subject at the forefront for further clinical development - Edited by one of the leading researchers in Alzheimer's Disease


Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases

Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases

Author: Farid Rahimi

Publisher: Springer Science & Business Media

Published: 2012-01-13

Total Pages: 568

ISBN-13: 9400727739

DOWNLOAD EBOOK

Amyloid-forming proteins are implicated in over 30 human diseases. The proteins involved in each disease have unrelated sequences and dissimilar native structures, but they all undergo conformational alterations to form fibrillar polymers. The fibrillar assemblies accumulate progressively into disease-specific lesions in vivo. Substantial evidence suggests these lesions are the end state of aberrant protein folding whereas the actual disease-causing culprits likely are soluble, non-fibrillar assemblies preceding the aggregates. The non-fibrillar protein assemblies range from small, low-order oligomers to spherical, annular, and protofibrillar species. Oligomeric species are believed to mediate various pathogenic mechanisms that lead to cellular dysfunction, cytotoxicity, and cell loss, eventuating in disease-specific degeneration and systemic morbidity. The particular pathologies thus are determined by the afflicted cell types, organs, systems, and the proteins involved. Evidence suggests that the oligomeric species may share structural features and possibly common mechanisms of action. In many cases, the structure–function interrelationships amongst the various protein assemblies described in vitro are still elusive. Deciphering these intricate structure–function correlations will help understanding a complex array of pathogenic mechanisms, some of which may be common across different diseases albeit affecting different cell types and systems.


Alzheimer's Disease

Alzheimer's Disease

Author: Thimmaiah Govindaraju

Publisher: Royal Society of Chemistry

Published: 2022-01-04

Total Pages: 531

ISBN-13: 1839162740

DOWNLOAD EBOOK

Alzheimer’s disease is an increasingly common form of dementia and despite rising interest in discovery of novel treatments and investigation into aetiology, there are no currently approved treatments that directly tackle the causes of the condition. Due to its multifactorial pathogenesis, current treatments are directed against symptoms and even precise diagnosis remains difficult as the majority of cases are diagnosed symptomatically and usually confirmed only by autopsy. Alzheimer’s Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic Modalities provides a comprehensive overview from aetiology and neurochemistry to diagnosis, evaluation and management of Alzheimer's disease, and latest therapeutic approaches. Intended to provide an introduction to all aspects of the disease and latest developments, this book is ideal for students, postgraduates and researchers in neurochemistry, neurological drug discovery and Alzheimer’s disease.


Neuropathology of Neurodegenerative Diseases

Neuropathology of Neurodegenerative Diseases

Author: Gabor G. Kovacs

Publisher: Cambridge University Press

Published: 2017-12-13

Total Pages: 320

ISBN-13: 1316337650

DOWNLOAD EBOOK

This practical guide to the diagnosis of neurodegenerative diseases discusses modern molecular techniques, morphological classification, fundamentals of clinical symptomology, diagnostic pitfalls and immunostaining protocols. It is based on the proteinopathy concept of neurodegenerative disease, which has influenced classification and provides new strategies for therapy. Numerous high-quality images, including histopathology photomicrographs and neuroradiology scans, accompany the description of morphologic alterations and interpretation of immunoreactivities. Diagnostic methods and criteria are placed within recent developments in neuropathology, including the now widespread application of immunohistochemistry. To aid daily practice, the guide includes diagnostic algorithms and offers personal insights from experienced experts in the field. Special focus is given to the way brain tissue should be handled during diagnosis. This is a must-have reference for medical specialists and specialist medical trainees in the fields of pathology, neuropathology and neurology working with neuropathologic features of neurodegenerative diseases.


Learning and Memory: A Comprehensive Reference

Learning and Memory: A Comprehensive Reference

Author:

Publisher: Academic Press

Published: 2017-07-07

Total Pages: 2517

ISBN-13: 0128052910

DOWNLOAD EBOOK

Learning and Memory: A Comprehensive Reference, Second Edition, Four Volume Set is the authoritative resource for scientists and students interested in all facets of learning and memory. This updated edition includes chapters that reflect the state-of-the-art of research in this area. Coverage of sleep and memory has been significantly expanded, while neuromodulators in memory processing, neurogenesis and epigenetics are also covered in greater detail. New chapters have been included to reflect the massive increase in research into working memory and the educational relevance of memory research. No other reference work covers so wide a territory and in so much depth. Provides the most comprehensive and authoritative resource available on the study of learning and memory and its mechanisms Incorporates the expertise of over 150 outstanding investigators in the field, providing a ‘one-stop’ resource of reputable information from world-leading scholars with easy cross-referencing of related articles to promote understanding and further research Includes further reading for each chapter that helps readers continue their research Includes a glossary of key terms that is helpful for users who are unfamiliar with neuroscience terminology