This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.
This book contains material from the lecture courses conducted at the Theoretical Advanced Study Institute (TASI, Colorado, USA) on high energy physics and cosmology in 2008. Three series of lectures are presented in parallel in the areas of Large Hadron Collider (LHC) phenomenology and experimentation; advanced theoretical topics beyond the standard model; and neutrino oscillation, astroparticle physics and cosmology. The phenomenology lectures cover a broad spectrum of standard research techniques used to interpret present-day and LHC data. The new physics lectures focus on modern speculations about physics beyond the standard model, with an emphasis on supersymmetry, grand unification theories, extra-dimensional theories, and string phenomenology, which may be tested at the LHC. The lecture series on neutrino physics, astroparticle physics and cosmology treats recent developments in neutrino oscillations, theories and searches of dark matter and dark energy, cosmic microwave background radiation, and density perturbation theory. The lectures are of pedagogical nature in presentation, and are accessible to advanced graduate students and researchers in high energy physics and cosmology.
The first precision measurements on CP violation in the B system are reported. Both the BELLE and the BABAR collaboration presented, among others, results for sin 2ß with much improved accuracy. Results from the Sudbury Neutrino Observatory, SNO, also deserve to be mentioned. The convincing evidence of solar neutrino oscillations had been presented by SNO prior to the conference; a full presentation was given at the conference. An incredibly precise measurement of the anomalous magnetic moment of the muon is reported, a fresh result from the Brookhaven National Laboratory. Apart from these distinct physics highlights, there are also the first results from the new Tevatron run and from the relativistic heavy ion collider RHIC. Theorists write of our ever better understanding of the Standard Model and of what might lie beyond. Risky as it is to highlight only a couple of exciting subjects, it is merely meantto whet the appetite for further reading.
The II International Workshop on Tau Lepton Physics was held in Ohio, USA in September 1992. Its purpose is to gather the experts on tau lepton physics to examine the current understanding of the tau lepton physics and to assess future prospects. A particular emphasis of the Workshop was a detailed examination of the '1-prong problem': the discrepancy between the inclusive measurement of one-charged-particle decay branching ratio and the sum of the exclusive decays. The Workshop also stimulated new ideas on tests of the Standard Model using the third generation lepton and assessed the future prospects of the lepton physics.