Highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Includes homework problems, suggestions for research projects, and open-ended questions at the end of each chapter. Written by our successful author who also wrote Continuous System Modeling, a best-selling Springer book first published in the 1991 (sold about 1500 copies).
Modeling and Simulation have become endeavors central to all disciplines of science and engineering. They are used in the analysis of physical systems where they help us gain a better understanding of the functioning of our physical world. They are also important to the design of new engineering systems where they enable us to predict the behavior of a system before it is ever actually built. Modeling and simulation are the only techniques available that allow us to analyze arbitrarily non-linear systems accurately and under varying experimental conditions. Continuous System Modeling introduces the student to an important subclass of these techniques. They deal with the analysis of systems described through a set of ordinary or partial differential equations or through a set of difference equations. This volume introduces concepts of modeling physical systems through a set of differential and/or difference equations. The purpose is twofold: it enhances the scientific understanding of our physical world by codifying (organizing) knowledge about this world, and it supports engineering design by allowing us to assess the consequences of a particular design alternative before it is actually built. This text has a flavor of the mathematical discipline of dynamical systems, and is strongly oriented towards Newtonian physical science.
This book is a definitive introduction to models of computation for the design of complex, heterogeneous systems. It has a particular focus on cyber-physical systems, which integrate computing, networking, and physical dynamics. The book captures more than twenty years of experience in the Ptolemy Project at UC Berkeley, which pioneered many design, modeling, and simulation techniques that are now in widespread use. All of the methods covered in the book are realized in the open source Ptolemy II modeling framework and are available for experimentation through links provided in the book. The book is suitable for engineers, scientists, researchers, and managers who wish to understand the rich possibilities offered by modern modeling techniques. The goal of the book is to equip the reader with a breadth of experience that will help in understanding the role that such techniques can play in design.
The book provides sound knowledge about the fundamental aspects of the important technique of system simulation which is used in the analysis of complex systems.
This book is an introduction to the High Level Architecture for modeling and simulation. The HLA is a software architecture for creating computer models and simulation out of component models or simulations. HLA was adopted by the US Defense Dept. The book is an introduction to HLA for application developers.
Simulation of Battery Systems: Fundamentals and Applications covers both the fundamental and technical aspects of battery systems. It is a solid reference on the simulation of battery dynamics based on fundamental governing equations of porous electrodes. Sections cover the fundamentals of electrochemistry and how to obtain electrochemical governing equations for porous electrodes, the governing equations and physical characteristics of lead-acid batteries, the physical characteristics of zinc-silver oxide batteries, experimental tests and parameters necessary for simulation and validation of battery dynamics, and an environmental impact and techno-economic assessment of battery systems for different applications, such as electric vehicles and battery energy storage. The book contains introductory information, with most chapters requiring a solid background in engineering or applied science. Battery industrial companies who want to improve their industrial batteries will also find this book useful. - Includes carefully selected in-text problems, case studies and illustrative examples - Features representative chapter-end problems, along with practical systems and applications - Covers various numerical methods, including those based on CFD and optimization, also including free codes and databases
From the preface, page xv: [...] My goal in writing Parallel and Distributed Simulation Systems, is to give an in-depth treatment of technical issues concerning the execution of discrete event simulation programs on computing platforms composed of many processores interconnected through a network"
This user’s reference is a companion to the separate book also titled “Guide to Modelling and Simulation of Systems of Systems.” The principal book explicates integrated development environments to support virtual building and testing of systems of systems, covering in some depth the MS4 Modelling EnvironmentTM. This user’s reference provides a quick reference and exposition of the various concepts and functional features covered in that book. The topics in the user’s reference are grouped in alignment with the workflow displayed on the MS4 Modeling EnvironmentTM launch page, under the headings Atomic Models, System Entity Structure, Pruning SES, and Miscellaneous. For each feature, the reference discusses why we use it, when we should use it, and how to use it. Further comments and links to related features are also included.
Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications introduces you to a broad array of modeling and simulation issues related to computer networks and systems. It focuses on the theories, tools, applications and uses of modeling and simulation in order to effectively optimize networks. It describes methodologies for modeling and simulation of new generations of wireless and mobiles networks and cloud and grid computing systems. Drawing upon years of practical experience and using numerous examples and illustrative applications recognized experts in both academia and industry, discuss: - Important and emerging topics in computer networks and systems including but not limited to; modeling, simulation, analysis and security of wireless and mobiles networks especially as they relate to next generation wireless networks - Methodologies, strategies and tools, and strategies needed to build computer networks and systems modeling and simulation from the bottom up - Different network performance metrics including, mobility, congestion, quality of service, security and more... Modeling and Simulation of Computer Networks and Systems is a must have resource for network architects, engineers and researchers who want to gain insight into optimizing network performance through the use of modeling and simulation. - Discusses important and emerging topics in computer networks and Systems including but not limited to; modeling, simulation, analysis and security of wireless and mobiles networks especially as they relate to next generation wireless networks - Provides the necessary methodologies, strategies and tools needed to build computer networks and systems modeling and simulation from the bottom up - Includes comprehensive review and evaluation of simulation tools and methodologies and different network performance metrics including mobility, congestion, quality of service, security and more
System Simulation Techniques with MATLAB and Simulink comprehensively explains how to use MATLAB and Simulink to perform dynamic systems simulation tasks for engineering and non-engineering applications. This book begins with covering the fundamentals of MATLAB programming and applications, and the solutions to different mathematical problems in simulation. The fundamentals of Simulink modelling and simulation are then presented, followed by coverage of intermediate level modelling skills and more advanced techniques in Simulink modelling and applications. Finally the modelling and simulation of engineering and non-engineering systems are presented. The areas covered include electrical, electronic systems, mechanical systems, pharmacokinetic systems, video and image processing systems and discrete event systems. Hardware-in-the-loop simulation and real-time application are also discussed. Key features: Progressive building of simulation skills using Simulink, from basics through to advanced levels, with illustrations and examples Wide coverage of simulation topics of applications from engineering to non-engineering systems Dedicated chapter on hardware-in-the-loop simulation and real time control End of chapter exercises A companion website hosting a solution manual and powerpoint slides System Simulation Techniques with MATLAB and Simulink is a suitable textbook for senior undergraduate/postgraduate courses covering modelling and simulation, and is also an ideal reference for researchers and practitioners in industry.