System on Chip Interfaces for Low Power Design

System on Chip Interfaces for Low Power Design

Author: Sanjeeb Mishra

Publisher: Morgan Kaufmann

Published: 2015-12-08

Total Pages: 0

ISBN-13: 9780128016305

DOWNLOAD EBOOK

System on Chip Interfaces for Low Power Design provides a top-down understanding of interfaces available to SoC developers, not only the underlying protocols and architecture of each, but also how they interact and the tradeoffs involved. The book offers a common context to help understand the variety of available interfaces and make sense of technology from different vendors aligned with multiple standards. With particular emphasis on power as a factor, the authors explain how each interface performs in various usage scenarios and discuss their advantages and disadvantages. Readers learn to make educated decisions on what interfaces to use when designing systems and gain insight for innovating new/custom interfaces for a subsystem and their potential impact.


System on Chip Interfaces for Low Power Design

System on Chip Interfaces for Low Power Design

Author: Sanjeeb Mishra

Publisher: Morgan Kaufmann

Published: 2015-11-17

Total Pages: 410

ISBN-13: 0128017902

DOWNLOAD EBOOK

System on Chip Interfaces for Low Power Design provides a top-down understanding of interfaces available to SoC developers, not only the underlying protocols and architecture of each, but also how they interact and the tradeoffs involved. The book offers a common context to help understand the variety of available interfaces and make sense of technology from different vendors aligned with multiple standards. With particular emphasis on power as a factor, the authors explain how each interface performs in various usage scenarios and discuss their advantages and disadvantages. Readers learn to make educated decisions on what interfaces to use when designing systems and gain insight for innovating new/custom interfaces for a subsystem and their potential impact. - Provides a top-down guide to SoC interfaces for memory, multimedia, sensors, display, and communication - Explores the underlying protocols and architecture of each interface with multiple examples - Guides through competing standards and explains how different interfaces might interact or interfere with each other - Explains challenges in system design, validation, debugging and their impact on development


System-on-Chip Design with Arm® Cortex®-M Processors

System-on-Chip Design with Arm® Cortex®-M Processors

Author: Joseph Yiu

Publisher: Arm Education Media

Published: 2019-08-29

Total Pages: 334

ISBN-13: 9781911531180

DOWNLOAD EBOOK

The Arm(R) Cortex(R)-M processors are already one of the most popular choices for loT and embedded applications. With Arm Flexible Access and DesignStart(TM), accessing Arm Cortex-M processor IP is fast, affordable, and easy. This book introduces all the key topics that system-on-chip (SoC) and FPGA designers need to know when integrating a Cortex-M processor into their design, including bus protocols, bus interconnect, and peripheral designs. Joseph Yiu is a distinguished Arm engineer who began designing SoCs back in 2000 and has been a leader in this field for nearly twenty years. Joseph's book takes an expert look at what SoC designers need to know when incorporating Cortex-M processors into their systems. He discusses the on-chip bus protocol specifications (AMBA, AHB, and APB), used by Arm processors and a wide range of on-chip digital components such as memory interfaces, peripherals, and debug components. Software development and advanced design considerations are also covered. The journey concludes with 'Putting the system together', a designer's eye view of a simple microcontroller-like design based on the Cortex-M3 processor (DesignStart) that uses the components that you will have learned to create.


Low Power Methodology Manual

Low Power Methodology Manual

Author: David Flynn

Publisher: Springer Science & Business Media

Published: 2007-07-31

Total Pages: 303

ISBN-13: 0387718192

DOWNLOAD EBOOK

This book provides a practical guide for engineers doing low power System-on-Chip (SoC) designs. It covers various aspects of low power design from architectural issues and design techniques to circuit design of power gating switches. In addition to providing a theoretical basis for these techniques, the book addresses the practical issues of implementing them in today's designs with today's tools.


Essential Issues in SOC Design

Essential Issues in SOC Design

Author: Youn-Long Steve Lin

Publisher: Springer Science & Business Media

Published: 2007-05-31

Total Pages: 405

ISBN-13: 1402053525

DOWNLOAD EBOOK

This book originated from a workshop held at the DATE 2005 conference, namely Designing Complex SOCs. State-of-the-art in issues related to System-on-Chip (SoC) design by leading experts in the fields, it covers IP development, verification, integration, chip implementation, testing and software. It contains valuable academic and industrial examples for those involved with the design of complex SOCs.


Network-on-Chip

Network-on-Chip

Author: Santanu Kundu

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 388

ISBN-13: 1466565276

DOWNLOAD EBOOK

Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems.


Simulation and Optimization of Digital Circuits

Simulation and Optimization of Digital Circuits

Author: Vazgen Melikyan

Publisher: Springer

Published: 2018-04-12

Total Pages: 371

ISBN-13: 3319716379

DOWNLOAD EBOOK

This book describes new, fuzzy logic-based mathematical apparatus, which enable readers to work with continuous variables, while implementing whole circuit simulations with speed, similar to gate-level simulators and accuracy, similar to circuit-level simulators. The author demonstrates newly developed principles of digital integrated circuit simulation and optimization that take into consideration various external and internal destabilizing factors, influencing the operation of digital ICs. The discussion includes factors including radiation, ambient temperature, electromagnetic fields, and climatic conditions, as well as non-ideality of interconnects and power rails.


High-Density Integrated Electrocortical Neural Interfaces

High-Density Integrated Electrocortical Neural Interfaces

Author: Sohmyung Ha

Publisher: Academic Press

Published: 2019-08-03

Total Pages: 212

ISBN-13: 0128151161

DOWNLOAD EBOOK

High-Density Integrated Electrocortical Neural Interfaces provides a basic understanding, design strategies and implementation applications for electrocortical neural interfaces with a focus on integrated circuit design technologies. A wide variety of topics associated with the design and application of electrocortical neural implants are covered in this book. Written by leading experts in the field— Dr. Sohmyung Ha, Dr. Chul Kim, Dr. Patrick P. Mercier and Dr. Gert Cauwenberghs —the book discusses basic principles and practical design strategies of electrocorticography, electrode interfaces, signal acquisition, power delivery, data communication, and stimulation. In addition, an overview and critical review of the state-of-the-art research is included. These methodologies present a path towards the development of minimally invasive brain-computer interfaces capable of resolving microscale neural activity with wide-ranging coverage across the cortical surface. - Written by leading researchers in electrocorticography in brain-computer interfaces - Offers a unique focus on neural interface circuit design, from electrode to interface, circuit, powering, communication and encapsulation - Covers the newest ECoG interface systems and electrode interfaces for ECoG and biopotential sensing


Industrial System Engineering for Drones

Industrial System Engineering for Drones

Author: Neeraj Kumar Singh

Publisher: Apress

Published: 2019-07-15

Total Pages: 268

ISBN-13: 1484235347

DOWNLOAD EBOOK

Explore a complex mechanical system where electronics and mechanical engineers work together as a cross-functional team. Using a working example, this book is a practical “how to” guide to designing a drone system. As system design becomes more and more complicated, systematic, and organized, there is an increasingly large gap in how system design happens in the industry versus what is taught in academia. While the system design basics and fundamentals mostly remain the same, the process, flow, considerations, and tools applied in industry are far different than that in academia. Designing Drone Systems takes you through the entire flow from system conception to design to production, bridging the knowledge gap between academia and the industry as you build your own drone systems. What You’ll LearnGain a high level understanding of drone systems Design a drone systems and elaborating the various aspects and considerations of design Review the principles of the industrial system design process/flow, and the guidelines for drone systems Look at the challenges, limitations, best practices, and patterns of system design Who This Book Is For Primarily for beginning or aspiring system design experts, recent graduates, and system design engineers. Teachers, trainers, and system design mentors can also benefit from this content.


A Practical Approach to VLSI System on Chip (SoC) Design

A Practical Approach to VLSI System on Chip (SoC) Design

Author: Veena S. Chakravarthi

Publisher: Springer Nature

Published: 2022-12-13

Total Pages: 355

ISBN-13: 3031183630

DOWNLOAD EBOOK

Now in a thoroughly revised second edition, this practical practitioner guide provides a comprehensive overview of the SoC design process. It explains end-to-end system on chip (SoC) design processes and includes updated coverage of design methodology, the design environment, EDA tool flow, design decisions, choice of design intellectual property (IP) cores, sign-off procedures, and design infrastructure requirements. The second edition provides new information on SOC trends and updated design cases. Coverage also includes critical advanced guidance on the latest UPF-based low power design flow, challenges of deep submicron technologies, and 3D design fundamentals, which will prepare the readers for the challenges of working at the nanotechnology scale. A Practical Approach to VLSI System on Chip (SoC) Design: A Comprehensive Guide, Second Edition provides engineers who aspire to become VLSI designers with all the necessary information and details of EDA tools. It will be a valuable professional reference for those working on VLSI design and verification portfolios in complex SoC designs