System Dependability and Analytics

System Dependability and Analytics

Author: Long Wang

Publisher: Springer Nature

Published: 2022-07-25

Total Pages: 429

ISBN-13: 3031020634

DOWNLOAD EBOOK

This book comprises chapters authored by experts who are professors and researchers in internationally recognized universities and research institutions. The book presents the results of research and descriptions of real-world systems, services, and technologies. Reading this book, researchers, professional practitioners, and graduate students will gain a clear vision on the state of the art of the research and real-world practice on system dependability and analytics. The book is published in honor of Professor Ravishankar K. Iyer, the George and Ann Fisher Distinguished Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois. Professor Iyer is ACM Fellow, IEEE Fellow, AAAS Fellow, and served as Interim Vice Chancellor of UIUC for research during 2008–2011. The book contains chapters written by many of his former students.


Reliability and Availability Engineering

Reliability and Availability Engineering

Author: Kishor S. Trivedi

Publisher: Cambridge University Press

Published: 2017-08-03

Total Pages: 729

ISBN-13: 1107099501

DOWNLOAD EBOOK

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.


Reliability Assessment of Safety and Production Systems

Reliability Assessment of Safety and Production Systems

Author: Jean-Pierre Signoret

Publisher: Springer Nature

Published: 2021-03-23

Total Pages: 878

ISBN-13: 3030647080

DOWNLOAD EBOOK

This book provides, as simply as possible, sound foundations for an in-depth understanding of reliability engineering with regard to qualitative analysis, modelling, and probabilistic calculations of safety and production systems. Drawing on the authors’ extensive experience within the field of reliability engineering, it addresses and discusses a variety of topics, including: • Background and overview of safety and dependability studies; • Explanation and critical analysis of definitions related to core concepts; • Risk identification through qualitative approaches (preliminary hazard analysis, HAZOP, FMECA, etc.); • Modelling of industrial systems through static (fault tree, reliability block diagram), sequential (cause-consequence diagrams, event trees, LOPA, bowtie), and dynamic (Markov graphs, Petri nets) approaches; • Probabilistic calculations through state-of-the-art analytical or Monte Carlo simulation techniques; • Analysis, modelling, and calculations of common cause failure and uncertainties; • Linkages and combinations between the various modelling and calculation approaches; • Reliability data collection and standardization. The book features illustrations, explanations, examples, and exercises to help readers gain a detailed understanding of the topic and implement it into their own work. Further, it analyses the production availability of production systems and the functional safety of safety systems (SIL calculations), showcasing specific applications of the general theory discussed. Given its scope, this book is a valuable resource for engineers, software designers, standard developers, professors, and students.


Performance and Reliability Analysis of Computer Systems

Performance and Reliability Analysis of Computer Systems

Author: Robin A. Sahner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 408

ISBN-13: 1461523672

DOWNLOAD EBOOK

Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using the SHARPE Software Package provides a variety of probabilistic, discrete-state models used to assess the reliability and performance of computer and communication systems. The models included are combinatorial reliability models (reliability block diagrams, fault trees and reliability graphs), directed, acyclic task precedence graphs, Markov and semi-Markov models (including Markov reward models), product-form queueing networks and generalized stochastic Petri nets. A practical approach to system modeling is followed; all of the examples described are solved and analyzed using the SHARPE tool. In structuring the book, the authors have been careful to provide the reader with a methodological approach to analytical modeling techniques. These techniques are not seen as alternatives but rather as an integral part of a single process of assessment which, by hierarchically combining results from different kinds of models, makes it possible to use state-space methods for those parts of a system that require them and non-state-space methods for the more well-behaved parts of the system. The SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) package is the `toolchest' that allows the authors to specify stochastic models easily and solve them quickly, adopting model hierarchies and very efficient solution techniques. All the models described in the book are specified and solved using the SHARPE language; its syntax is described and the source code of almost all the examples discussed is provided. Audience: Suitable for use in advanced level courses covering reliability and performance of computer and communications systems and by researchers and practicing engineers whose work involves modeling of system performance and reliability.


Applied Reliability Engineering and Risk Analysis

Applied Reliability Engineering and Risk Analysis

Author: Ilia B. Frenkel

Publisher: John Wiley & Sons

Published: 2013-08-22

Total Pages: 449

ISBN-13: 1118701895

DOWNLOAD EBOOK

This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-state system reliability, maintenance models, statistical inference in reliability, systemability, physics of failures and reliability demonstration many examples and engineering case studies to illustrate the theoretical results and their practical applications in industry Applied Reliability Engineering and Risk Analysis is one of the first works to treat the important areas of degradation analysis, multi-state system reliability, networks and large-scale systems in one comprehensive volume. It is an essential reference for engineers and scientists involved in reliability analysis, applied probability and statistics, reliability engineering and maintenance, logistics, and quality control. It is also a useful resource for graduate students specialising in reliability analysis and applied probability and statistics. Dedicated to the Centennial of the birth of Boris Gnedenko, renowned Russian mathematician and reliability theorist


Dependable Embedded Systems

Dependable Embedded Systems

Author: Jörg Henkel

Publisher: Springer Nature

Published: 2020-12-09

Total Pages: 606

ISBN-13: 303052017X

DOWNLOAD EBOOK

This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems.


Reliability in Automotive and Mechanical Engineering

Reliability in Automotive and Mechanical Engineering

Author: Bernd Bertsche

Publisher: Springer Science & Business Media

Published: 2008-04-30

Total Pages: 502

ISBN-13: 3540342826

DOWNLOAD EBOOK

Defects generate a great economic problem for suppliers who are faced with increased duties. Customers expect increased efficiency and dependability of technical product of - also growing - complexity. The authors give an introduction to a theory of dependability for engineers. The book may serve as a reference book as well, enhancing the knowledge of the specialists and giving a lot of theoretical background and information, especially on the dependability analysis of whole systems.


Fundamentals of Dependable Computing for Software Engineers

Fundamentals of Dependable Computing for Software Engineers

Author: John Knight

Publisher: CRC Press

Published: 2012-01-12

Total Pages: 438

ISBN-13: 1439862559

DOWNLOAD EBOOK

Fundamentals of Dependable Computing for Software Engineers presents the essential elements of computer system dependability. The book describes a comprehensive dependability-engineering process and explains the roles of software and software engineers in computer system dependability. Readers will learn: Why dependability matters What it means for a system to be dependable How to build a dependable software system How to assess whether a software system is adequately dependable The author focuses on the actions needed to reduce the rate of failure to an acceptable level, covering material essential for engineers developing systems with extreme consequences of failure, such as safety-critical systems, security-critical systems, and critical infrastructure systems. The text explores the systems engineering aspects of dependability and provides a framework for engineers to reason and make decisions about software and its dependability. It also offers a comprehensive approach to achieve software dependability and includes a bibliography of the most relevant literature. Emphasizing the software engineering elements of dependability, this book helps software and computer engineers in fields requiring ultra-high levels of dependability, such as avionics, medical devices, automotive electronics, weapon systems, and advanced information systems, construct software systems that are dependable and within budget and time constraints.


Reliability and Risk Analysis

Reliability and Risk Analysis

Author: Terje Aven

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 347

ISBN-13: 9401128588

DOWNLOAD EBOOK

Analysis of reliability and risk is an important and integral part of planning, construction and operation of all technical systems. To be able to perform such analyses systematically and scientifically, there is usually a need for special methods and models. This book presents the most important of these. Particular emphasis has been placed on the ideas and the motivation for the use of the various methods and models. It has been an objective to compile a book which provides practising engineers and engineering graduates with the concepts and basic techniques for evaluating reliability and risk. It is hoped that the material presented will make them so familiar with the subject that they can carry out various types of analyses themselves and understand and make use of the more detailed applications and additional material which is available in the journals and publications associated with their own discipline. It has also been an objective to put reliability and risk analyses in context - how such analyses should be used in design and operation of components and systems. The material presented is modern and a large part of the book is at research level. The book focuses on analysis of repairable systems, not only non-repairable systems which have traditionally been given most attention in textbooks on reliability theory. Since most real-life systems are repairable, methods for analysing repairable systems are an important area of research. The book presents general methods, with most applications taken from offshore petro leum activities.