Synthesis and Characterisation of Non-Fullerene Electron Acceptors for Organic Photovoltaics

Synthesis and Characterisation of Non-Fullerene Electron Acceptors for Organic Photovoltaics

Author: Sarah Holliday

Publisher: Springer

Published: 2018-03-22

Total Pages: 119

ISBN-13: 3319770918

DOWNLOAD EBOOK

This book reports on the design, synthesis and characterization of new small molecule electron acceptors for polymer solar cells. Starting with a detailed introduction to the science behind polymer solar cells, the author then goes on to review the challenges and advances made in developing non-fullerene acceptors so far. In the main body of the book, the author describes the design principles and synthetic strategy for a new family of acceptors, including detailed synthetic procedures and molecular modeling data used to predict physical properties. An indepth characterization of the photovoltaic performance, with transient absorption spectroscopy (TAS), photo-induced charge extraction, and grazing incidence X-ray diffraction (GIXRD) is also included, and the author uses this data to relate material properties and device performance. This book provides a useful overview for researchers beginning a project in this or related areas.


Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2021-08-24

Total Pages: 578

ISBN-13: 1119724708

DOWNLOAD EBOOK

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.


Organic Electronics From Synthesis To Applications

Organic Electronics From Synthesis To Applications

Author: John George Hardy

Publisher: Frontiers Media SA

Published: 2020-02-03

Total Pages: 143

ISBN-13: 2889634531

DOWNLOAD EBOOK

Organic electronics is one of the most exciting emerging areas of materials science. It is a highly interdisciplinary research area involving scientists and engineers who develop organic molecules with interesting properties for a variety of applications in technical industries (e.g. circuitry, energy harvesting/storage, etc.) and medical applications (e.g. bioelectronics for sensors, tissue scaffolds for tissue engineering, etc.). This Research Topic collects articles that report advances in chemistry (e.g. design and synthesis of molecules with various molecular weights and structures); physical chemistry and chemical physics, and computational/theoretical research (e.g. to push the boundaries of our understanding); chemical engineering (e.g. design, prototyping and manufacturing devices); materials scientists and technologists to explore different markets for the technologies employing such materials, the organic bioelectronics field and green/sustainable electronics.


World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 1 & 2)

World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 1 & 2)

Author:

Publisher: World Scientific

Published: 2018-06-29

Total Pages: 909

ISBN-13: 9813239859

DOWNLOAD EBOOK

Organic (opto)electronic materials have received considerable attention due to their applications in perovskite and flexible electronics, OPVs and OLEDs and many others. Reflecting the rapid growth in research and development of organic (opto)electronic materials over the last few decades, this book provides a comprehensive coverage of the state of the art in an accessible format. It presents the most widely recognized fundamentals, principles, and mechanisms along with representative examples, key experimental data, and over 200 illustrative figures.


Organic Polymers

Organic Polymers

Author: Arpit Sand

Publisher: BoD – Books on Demand

Published: 2020-03-11

Total Pages: 148

ISBN-13: 1789845734

DOWNLOAD EBOOK

This book, Organic Polymers, covers aspects that are of immediate concern to a new entrant to the field of polymers. Taken as a whole, these eight chapters aim to help the readers easily assimilate other specialized and exhaustive treatises on the subject. Topics dealing with the chemistry and technology of polymers are presented in a careful and logical manner so as to provide an easy and enjoyable read. Several examples and analogies are included so to make the main concepts easy to follow and tables and figures are included so that the book can serve, to a limited extent, as a hand book dealing with polysaccharides with different parameters. This book is meant for students studying polysaccharides and those working on graft copolymers and other allied polymer industries but without a formal educational background in organic polymers.


Optoelectronic Organic-Inorganic Semiconductor Heterojunctions

Optoelectronic Organic-Inorganic Semiconductor Heterojunctions

Author: Ye Zhou

Publisher: CRC Press

Published: 2021-01-19

Total Pages: 382

ISBN-13: 1000325717

DOWNLOAD EBOOK

Optoelectronic Organic-Inorganic Semiconductor Heterojunctions summarizes advances in the development of organic-inorganic semiconductor heterojunctions, points out challenges and possible solutions for material/device design, and evaluates prospects for commercial applications. Introduces the concept and basic mechanism of semiconductor heterojunctions Describes a series of organic-inorganic semiconductor heterojunctions with desirable electrical and optical properties for optoelectronic devices Discusses typical devices such as solar cells, photo-detectors, and optoelectronic memories Outlines the materials and device challenges as well as possible strategies to promote the commercial translation of semiconductor heterojunctions-based optoelectronic devices Aimed at graduate students and researchers working in solid-state materials and electronics, this book offers a comprehensive yet accessible view of the state of the art and future directions.


Materials for Solar Energy Conversion

Materials for Solar Energy Conversion

Author: R. Rajasekar

Publisher: John Wiley & Sons

Published: 2021-11-16

Total Pages: 404

ISBN-13: 1119750601

DOWNLOAD EBOOK

MATERIALS FOR SOLAR ENERGY CONVERSION This book provides professionals and students with a resource on the basic principles and applications of solar energy materials and processes, as well as practicing engineers who want to understand how functional materials operate in solar energy conversion systems. The demand for energy is increasing daily, and the development of sustainable power generation is a critical issue. In order to overcome the energy demand, power generation through solar energy is booming. Many research works have attempted to enhance the efficiency of collection and storage of solar energy and, as a result, numerous advanced functional materials have been developed for enhancing the performance of solar cells. This book has compiled and broadly explores the latest developments of materials, methods, and applications of solar energy. The book is divided into 2 parts, in which the first part deals with solar cell fundamentals and emerging categories, and the latter part deals with materials, methods, and applications in order to fill the gap between existing technologies and practical requirements. The book presents detailed chapters including organic, inorganic, coating materials, and collectors. The use of modern computer simulation techniques, conversion and storage processes are effectively covered. Topics such as nanostructured solar cells, battery materials, etc. are included in this book as well. Audience The book is aimed at researchers in materials science, chemistry, physics, electrical and mechanical engineering working in the fields of nanotechnology, photovoltaic device technology, and solar energy.


Organic Photovoltaics

Organic Photovoltaics

Author: Sam-Shajing Sun

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 682

ISBN-13: 9781420026351

DOWNLOAD EBOOK

Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.