In less than 20 years N-heterocyclic carbenes (NHCs) have become well-established ancillary ligands for the preparation of transition metal-based catalysts. This is mainly due to the fact that NHCs tend to bind strongly to metal centres, avoiding the need of excess ligand in catalytic reactions. Also, NHC‒metal complexes are often insensitive to air and moisture, and have proven remarkably resistant to oxidation. This book showcases the wide variety of applications of NHCs in different chemistry fields beyond being simple phosphine mimics. This second edition has been updated throughout, and now includes a new chapter on NHC‒main group element complexes. It covers the synthesis of NHC ligands and their corresponding metal complexes, as well as their bonding and stereoelectronic properties and applications in catalysis. This is complemented by related topics such as organocatalysis and biologically active complexes. Written for organic and inorganic chemists, this book is ideal for postgraduates, researchers and industrialists.
This comprehensive reference and handbook covers in depth all major aspects of the use of N-heterocyclic carbene-complexes in organic synthesis: from the theoretical background to characterization, and from cross-coupling reactions to olefin metathesis. Edited by a leader and experienced scientist in the field of homogeneous catalysis and use of NHCs, this is an essential tool for every academic and industrial synthetic chemist.
With its comprehensive overview of modern reduction methods, this book features high quality contributions allowing readers to find reliable solutions quickly and easily. The monograph treats the reduction of carbonyles, alkenes, imines and alkynes, as well as reductive aminations and cross and heck couplings, before finishing off with sections on kinetic resolutions and hydrogenolysis. An indispensable lab companion for every chemist.
This first handbook to focus solely on the application of N-heterocyclic carbenes in synthesis covers metathesis, organocatalysis, oxidation and asymmetric reactions, along with experimental procedures. Written by leading international experts this is a valuable and practical source for every organic chemist.
In this book leading experts have surveyed major areas of application of NHC metal complexes in catalysis. The authors have placed a special focus on nickel- and palladium-catalyzed reactions, on applications in metathesis reactions, on oxidation reactions and on the use of chiral NHC-based catalysts. This compilation is rounded out by an introductory chapter and a chapter dealing with synthetic routes to NHC metal complexes.
Confused by modern art? This book traces the history of art from the end of the Medieval Period through to today. It looks at the technological, social, and philosophical developments that have influenced changes in art and tastes. This brief survey of visual art, music, poetry, literature, and philosophy will provide you with the tools to understand art of the past, present, and future.
The Organometallic Chemistry of N-heterocyclic Carbenes describes various aspects of N-heterocyclic Carbenes (NHCs) and their transition metal complexes at an entry level suitable for advanced undergraduate students and above. The book starts with a historical overview on the quest for carbenes and their complexes. Subsequently, unique properties, reactivities and nomenclature of the four classical NHCs derived from imidazoline, imidazole, benzimidazole and 1,2,4-triazole are elaborated. General and historically relevant synthetic aspects for NHCs, their precursors and complexes are then explained. The book continues with coverage on the preparation and characteristics of selected NHC complexes containing the most common metals in this area, i.e. Ni, Pd, Pt, Ag, Cu, Au, Ru, Rh and Ir. The book concludes with an overview and outlook on the development of various non-classical NHCs beyond the four classical types. Topics covered include: Stabilization, dimerization and decomposition of NHCs Stereoelectronic properties of NHCs and their evaluation Diversity of NHCs Isomers of NHC complexes and their identification NMR spectroscopic signatures of NHC complexes normal, abnormal and mesoionic NHCs The Organometallic Chemistry of N-heterocyclic Carbenes is an essential resource for all students and researchers interested in this increasingly important and popular field of research.
This book will describe Ruthenium complexes as chemotherapeutic agent specifically at tumor site. It has been the most challenging task in the area of cancer therapy. Nanoparticles are now emerging as the most effective alternative to traditional chemotherapeutic approach. Nanoparticles have been shown to be useful in this respect. However, in view of organ system complicacies, instead of using nanoparticles as a delivery tool, it will be more appropriate to synthesize a drug of nanoparticle size that can use blood transport mechanism to reach the tumor site and regress cancer. Due to less toxicity and effective bio-distribution, ruthenium (Ru) complexes are of much current interest. Additionally, lumiscent Ru-complexes can be synthesized in nanoparticle size and can be directly traced at tissue level. The book will contain the synthesis, characterization, and applications of various Ruthenium complexes as chemotherapeutic agents. The book will also cover the introduction to chemotherapy, classification of Ru- complexes with respect to their oxidation states and geometry, Ruthenium complexes of nano size: shape and binding- selectivity, binding of ruthenium complexes with DNA, DNA cleavage studies and cytotoxicity. The present book will be more beneficial to researchers, scientists and biomedical. Current book will empower specially to younger generation to create a new world of ruthenium chemistry in material science as well as in medicines. This book will be also beneficial to national/international research laboratories, and academia with interest in the area of coordination chemistry more especially to the Ruthenium compounds and its applications.
Edited by a team of highly respected researchers combining their expertise in chemistry, physics, and medicine, this book focuses on the use of rutheniumcontaining complexes in artificial photosynthesis and medicine. Following a brief introduction to the basic coordination chemistry of ruthenium complexes and their synthesis in section one, as well as their photophysical and photochemical properties, the authors discuss in detail the major concepts of artificial photosynthesis and mechanisms of hydrogen production and water oxidation with ruthenium in section two. The third section of the text covers biological properties and important medical applications of ruthenium complexes as therapeutic agents or in diagnostic imaging. Aimed at stimulating research in this active field, this is an invaluable information source for researchers in academia, health research institutes and governmental departments working in the field of organometallic chemistry, green and sustainable chemistry as well as medicine/drug discovery, while equally serving as a useful reference also for scientists in industry.
This dissertation, "Chiral Iron Pyridine Complexes and Ruthenium Complexes With N-heterocyclic Carbene and Macrocyclic (N, O) Donor Atom Ligands: Synthesis, Catalytic Activity and Biological Studies" by Kar-yee, Lam, 林嘉儀, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled CHIRAL IRON PYRIDINE COMPLEXES AND RUTHENIUM COMPLEXES WITH N-HETEROCYCLIC CARBENE AND MACROCYCLIC(N, O) DONOR ATOM LIGANDS: SYNTHESIS, CATALYTIC ACTIVITY AND BIOLOGICAL STUDIES Submitted by Lam Kar Yee For the degree of Doctor of Philosophy at The University of Hong Kong in April 2016 Transition metal complexes are widely applied as catalysts for organic transformation reactions such as the oxygen atom and nitrene transfer reactions and there is a growing interest to develop the medicinal applications of transition metal complexes. The studies of reactive metal-oxo and metal-nitrene intermediates are important in probing the underlying reaction mechanisms. This thesis is comprised of three main parts. In the first part, iron complexes with chiral pyridine ligands, such as 4′,6-disubstituted 2,2′ 6′,2″-terpyridine (NNN ) and 4′,6,6″-trisubstituted 2,2′ 6′,2″''-terpyridine (NNN ), were studied for their catalytic activities in asymmetric epoxidation, aziridination, amidation and sulfimidation reactions. The Fe-NNN complex catalyzed intermolecular nitrene transfer/CN bond formation reactions of styrenes with PhINTs in moderate product yields. For the asymmetric intramolecular amidation, the Fe-NNN complex can catalyze intramolecular C-N bond formation using PhI(OAc) as oxidant to form five- or six-membered ring products. The highest product yield obtained was 91 %. The complete conversion of para-substituted phenyl methyl sulfides to corresponding sulfimides was observed by using the Fe-NNN 1 2 complex as catalyst. Both the Fe-NNN and Fe-NNN complexes catalyzed asymmetric epoxidation of styrene using PhIO as oxidant at 0 C. The reaction intermediates of the nitrene/oxygen transfer reactions were studied by ESI-MS and high-valent iron-ligand multiple bonded species are proposed to be the reaction intermediates. In the second part, ruthenium pincer N-heterocyclic carbene (CNC) complexes were prepared and characterized by spectroscopic means and X-ray crystallography. II 2+ Complex [Ru (CNC)(bpy)(MeCN)], in which the CNC ligand adopts a fac-coordination mode and contains reactive CH bond of bridging methylene group, was found to react with PhINTs to result in the formation of a new CN bond and cleavage of one existing NC(methylene) bond of the CNC ligand, as revealed by X-ray crystal structure determination of the ruthenium complex product. The reaction 2+ of [Ru(CNC)(bpy)(MeCN)] with PhINTs was monitored by ESI-MS, UV-vis, and NMR spectroscopy; a paramagnetic Ru(III)-amido complex was isolated, which apparently resulted from intramolecular imido/nitrene CH insertion of a Ru(IV)-imido/nitrene intermediate and was found to undergo the observed CN bond cleavage. Such type of CN bond cleavage induced by metal-mediated imido/nitrene insertion is unprecedented in literature. The final part of this thesis is the study of the anti-angiogenic and anti-metastatic properties of the ruthenium complexes. Ruthenium complexes with different oxidation states (+2 and +3) and ligands (pincer NHC and macrocyclic (N, O) donor atom ligands) were examined for their cytotoxicity and anti-angiogenesis activity. III Among the complexes studied, [Ru (N O )Cl ]Cl (Ru-1) displays promising 2 2 2 inhibi