This timely book explores the various uses and aspects of symbols in school mathematics and the notion of mathematical meaning. In addition, the author addresses a number of key issues for the 1990s eg.changes within mathematical functioning.
This book explores the option of building on symbolizing, modeling and tool use as personally meaningful activities of students. It discusses the dimension of setting: varying from the study of informal, spontaneous activity of students, to an explicit focus on instructional design, and goals and effects of instruction; and the dimension of the theoretical framework of the researcher: varying from constructivism, to activity theory, cognitive psychology and instructional-design theory.
Ever wonder if there's a reference guide out there summarizing most of the symbols used in mathematics, along with contextual examples and LaTeX code so that you can pick up the various topics of mathematics at an unusual speed? Well now there is! In this jam-packed 75-page eBook, the Comprehensive List of Mathematical Symbols will take you through thousands of symbols in 10+ topics and 6 main categories. Each symbol also comes with their own defining examples, LaTeX codes and links to additional resources, making the eBook both a handy reference and a powerful tool for consolidating one's foundation of mathematics. Highlights - Featuring 1000+ of symbols from basic math, algebra, logic, set theory to calculus, analysis, probability and statistics - Comes with LaTeX code, defining contextual examples and links to additional resources - Clear. Concise. Straight-to-the-point with no fluff. - Informative. Engaging. Excellent for shortening the learning/reviewing curve. Table of Contents 1) Constants Key Mathematical Numbers Key Mathematical Sets Key Mathematical Infinities Other Key Mathematical Objects 2) Variables Variables for Numbers Variables in Geometry Variables in Logic Variables in Set Theory Variables in Linear/Abstract Algebra Variables in Probability and Statistics Variables in Calculus 3) Delimiters Common Delimiters Other Delimiters 4) Alphabet Letters Greek Letters Used in Mathematics Other Greek Letters 5) Operators Common Operators Number-related Operators Common Number-based Operators Complex-number-based Operators Function-related Operators Common Function-based Operators Elementary Functions Key Calculus-related Functions and Transforms Other Key Functions Operators in Geometry Operators in Logic Logical Connectives Quantifiers Substitution/Valuation-based Operators Set-related Operators Operators in Algebra Vector-related Operators Matrix-related Operators Vector-space-related Operators Abstract-algebra-related Operators Operators in Probability and Statistics Combinatorial Operators Probability-related Operators Probability-related Functions Discrete Probability Distributions Continuous Probability Distributions and Associated Functions Statistical Operators Operators in Calculus Operators Related to Sequence, Series and Limit Derivative-based Operators Integral-based Operators 6) Relational Symbols Equality-based Relational Symbols Comparison-based Relational Symbols Number-related Relational Symbols Relational Symbols in Geometry Relational Symbols in Logic Set-related Relational Symbols Relational Symbols in Abstract Algebra Relational Symbols in Probability and Statistics Relational Symbols in Calculus 7) Notational Symbols Common Notational Symbols Intervals Notational Symbols in Geometry and Trigonometry Notational Symbols in Probability and Statistics Notational Symbols in Calculus
This single-volume reference is designed for readers and researchers investigating national and international aspects of mathematics education at the elementary, secondary, and post-secondary levels. It contains more than 400 entries, arranged alphabetically by headings of greatest pertinence to mathematics education. The scope is comprehensive, encompassing all major areas of mathematics education, including assessment, content and instructional procedures, curriculum, enrichment, international comparisons, and psychology of learning and instruction.
Through real-life situations, children will be introduced to the vocabulary of math words and symbols. Fundamental vocabulary such as "greater than" and "less than," and the meaning of symbols such as +, _, =, are all explained with engaging photographs and easy-to-understand text.
Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions of mathematical problems as well as the progressive construction of mathematical conceptions that, eventually, will approximate the concept(s) encoded in mathematical symbols. These symbols hinge not only of mental operations but also on indexical and iconic aspects; aspects which often are not taken into account when working on the meaning of mathematical symbols. For such an enhancement to happen, it is necessary to transform basic notions of semiotic theories to make them usable for mathematics education. In addition, it is also necessary to back theoretical claims with empirical data. This anthology attempts to deal with such a conjunction. Overall, this book can be used as a theoretical basis for further semiotic considerations as well as for the design of different ways of teaching mathematical concepts.
Mathematics and Science education have both grown in fertile directions in different geographic regions. Yet, the mainstream discourse in international handbooks does not lend voice to developments in cognition, curriculum, teacher development, assessment, policy and implementation of mathematics and science in many countries. Paradoxically, in spite of advances in information technology and the “flat earth” syndrome, old distinctions and biases between different groups of researcher’s persist. In addition limited accessibility to conferences and journals also contribute to this problem. The International Sourcebooks in Mathematics and Science Education focus on under-represented regions of the world and provides a platform for researchers to showcase their research and development in areas within mathematics and science education. The First Sourcebook on Asian Research in Mathematics Education: China, Korea, Singapore, Japan, Malaysia and India provides the first synthesized treatment of mathematics education that has both developed and is now prominently emerging in the Asian and South Asian world. The book is organized in sections coordinated by leaders in mathematics education in these countries and editorial teams for each country affiliated with them. The purpose of unique sourcebook is to both consolidate and survey the established body of research in these countries with findings that have influenced ongoing research agendas and informed practices in Europe, North America (and other countries) in addition to serving as a platform to showcase existing research that has shaped teacher education, curricula and policy in these Asian countries. The book will serve as a standard reference for mathematics education researchers, policy makers, practitioners and students both in and outside Asia, and complement the Nordic and NCTM perspectives.
What comes first, class management or student engagement? How can the ‘real world’ be used to engage learners? What is the role of technology in engaging students? And is ‘understanding’ or ‘exam success’ more engaging? In the modern world, success in school mathematics can determine life chances. It is therefore vital to engage children and young people in learning mathematics. Engaging in Mathematics in the Classroom brings together the debates concerning mathematical engagement and draws on first-hand experience and key research to promote successful classroom practice. It considers what engagement looks like at different ages and the implications of this for the classroom. Accessibly written with examples of successful classroom practice, activities and projects, the book covers: Planning and managing engagement in learning; Mathematical understandings and meanings; Early Primary and the number system; Primary/Secondary Transition and geometrical thinking; Secondary school: Adolescence and algebraic activity; Post-16 and infinity; Learning across the lifespan. Written by a leading authority in the field, this timely text will be essential reading for all trainee and practising teachers of mathematics.
This text is about the differences between the practical knowledge of mathematics and mathematics learned in school. The authors look at the differences between these two ways of solving mathematical problems.